Benutzer: Gast  Login
Titel:

Reconciling privacy and accuracy in AI for medical imaging

Dokumenttyp:
Article
Autor(en):
Ziller, Alexander; Mueller, Tamara T.; Stieger, Simon; Feiner, Leonhard F.; Brandt, Johannes; Braren, Rickmer; Rueckert, Daniel; Kaissis, Georgios
Abstract:
Artificial intelligence (AI) models are vulnerable to information leakage of their training data, which can be highly sensitive, for example, in medical imaging. Privacy-enhancing technologies, such as differential privacy (DP), aim to circumvent these susceptibilities. DP is the strongest possible protection for training models while bounding the risks of inferring the inclusion of training samples or reconstructing the original data. DP achieves this by setting a quantifiable privacy budget. A...     »
Zeitschriftentitel:
Nat. Mach. Intell.
Jahr:
2024
Band / Volume:
6
Heft / Issue:
7
Volltext / DOI:
doi:10.1038/s42256-024-00858-y
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX