Benutzer: Gast  Login
Titel:

Towards Multimodal Prediction of Spontaneous Humor: A Novel Dataset and First Results

Dokumenttyp:
Article
Autor(en):
Christ, Lukas; Amiriparian, Shahin; Kathan, Alexander; Mueller, Niklas; Konig, Andreas; Schuller, Bjoern W.
Abstract:
Humor is a substantial element of human social behavior, affect, and cognition. Its automatic understanding can facilitate a more naturalistic human-AI interaction. Current methods of humor detection have been exclusively based on staged data, making them inadequate for 'real-world' applications. We contribute to addressing this deficiency by introducing the novel Passau-Spontaneous Football Coach Humor (Passau-SFCH) dataset, comprising about 11 hours of recordings. The Passau-SFCH dataset is an...     »
Zeitschriftentitel:
IEEE Trans Affect Comput
Jahr:
2025
Band / Volume:
16
Heft / Issue:
2
Seitenangaben Beitrag:
844-860
Volltext / DOI:
doi:10.1109/taffc.2024.3475736
Print-ISSN:
1949-3045
TUM Einrichtung:
Lehrstuhl für Health Informatics (Prof. Schuller)
 BibTeX