Benutzer: Gast  Login
Titel:

Development and validation of prediction models for stroke and myocardial infarction in type 2 diabetes based on health insurance claims: does machine learning outperform traditional regression approaches?

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Stephan AJ, Hanselmann M, Bajramovic M, Schosser S, Laxy M
Abstract:
Background Digitalization and big health system data open new avenues for targeted prevention and treatment strategies. We aimed to develop and validate prediction models for stroke and myocardial infarction (MI) in patients with type 2 diabetes based on routinely collected high-dimensional health insurance claims and compared predictive performance of traditional regression with state-of-the-art machine learning including deep learning methods. Methods We used German health insurance claim...     »
Stichworte:
Machine learning; health insurance; Claims database analysis; Predictive algorithms; Prediction model; Risk scores, Type 2 diabetes; Myocardial infarction; Stroke; Logistic regression; Deep learning
Zeitschriftentitel:
Cardiovascular Diabetology
Jahr:
2025
Band / Volume:
24, Article number 80(2025)
Jahr / Monat:
2025-02
Quartal:
1. Quartal
Monat:
Feb
Heft / Issue:
24, Article number 80(2025)
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:https://doi.org/10.1186/s12933-025-02640-9
WWW:
https://cardiab.biomedcentral.com/articles/10.1186/s12933-025-02640-9
Impact Factor:
8,5
Scimago-Quartil:
Q1
Status:
Verlagsversion / published
Eingereicht (bei Zeitschrift):
15.11.2024
Angenommen (von Zeitschrift):
08.02.2025
Publikationsdatum:
18.02.2025
Format:
Bild/Text
Eingabe:
18.02.2025
 BibTeX