User: Guest  Login
Title:

On universal inference in Gaussian mixture models

Document type:
Zeitschriftenaufsatz
Author(s):
Shi, Hongjian; Drton, Mathias
Abstract:
Recent work on game-theoretic statistics and safe anytime-valid inference (SAVI) provides new tools for statistical inference without assuming any regularity conditions. In particular, the framework of universal inference proposed by Wasserman, Ramdas, and Balakrishnan (2020) offers new solutions by modifying the likelihood ratio test in a data-splitting scheme. In this paper, we study the performance of the resulting split likelihood ratio test under Gaussian mixture models, which are canonical...     »
Dewey Decimal Classification:
510 Mathematik
Journal title:
Preprint
Year:
2024
Language:
en
Fulltext / DOI:
doi:10.48550/ARXIV.2407.19361
Publisher:
arXiv
Status:
Preprint / submitted
Date of publication:
28.07.2024
Semester:
SS 24
TUM Institution:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX