Benutzer: Gast  Login
Titel:

Causal Discovery of Linear Non-Gaussian Causal Models with Unobserved Confounding

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Schkoda, Daniela; Robeva, Elina; Drton, Mathias
Abstract:
We consider linear non-Gaussian structural equation models that involve latent confounding. In this setting, the causal structure is identifiable, but, in general, it is not possible to identify the specific causal effects. Instead, a finite number of different causal effects result in the same observational distribution. Most existing algorithms for identifying these causal effects use overcomplete independent component analysis (ICA), which often suffers from convergence to local optima. Furth...     »
Dewey Dezimalklassifikation:
510 Mathematik
Zeitschriftentitel:
Preprint
Jahr:
2024
Sprache:
en
Volltext / DOI:
doi:10.48550/ARXIV.2408.04907
Verlag / Institution:
arXiv
Status:
Preprint / submitted
Eingereicht (bei Zeitschrift):
09.08.2024
Publikationsdatum:
09.08.2024
Semester:
SS 24
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX