Benutzer: Gast  Login
Titel:

3DTINC: Time-Equivariant Non-Contrastive Learning for Predicting Disease Progression From Longitudinal OCTs.

Dokumenttyp:
Journal Article
Autor(en):
Emre, Taha; Chakravarty, Arunava; Rivail, Antoine; Lachinov, Dmitrii; Leingang, Oliver; Riedl, Sophie; Mai, Julia; Scholl, Hendrik P N; Sivaprasad, Sobha; Rueckert, Daniel; Lotery, Andrew; Schmidt-Erfurth, Ursula; Bogunovic, Hrvoje
Abstract:
Self-supervised learning (SSL) has emerged as a powerful technique for improving the efficiency and effectiveness of deep learning models. Contrastive methods are a prominent family of SSL that extract similar representations of two augmented views of an image while pushing away others in the representation space as negatives. However, the state-of-the-art contrastive methods require large batch sizes and augmentations designed for natural images that are impractical for 3D medical images. To ad...     »
Zeitschriftentitel:
IEEE Trans Med Imaging
Jahr:
2024
Band / Volume:
43
Heft / Issue:
9
Seitenangaben Beitrag:
3200-3210
Volltext / DOI:
doi:10.1109/TMI.2024.3391215
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/38656867
Print-ISSN:
0278-0062
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX