Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Grigor Keropyan
Titel:
Post-Nonlinear Gaussian Causal Models
Abstract:
Learning causal structures plays an important role in various fields, ranging from biology and clinical medicine to economics and many others. Since using controlled experiments is often not possible due to cost or ethical reasons, causal discovery based on only observational data is an interesting topic of research. In order to study causal structures researchers often employ Structural Equation Models (SEM). In general, the true underlying causal structure cannot be uniquely identified. To avo...     »
Fachgebiet:
MAT Mathematik
DDC:
510 Mathematik
Aufgabensteller:
Mathias Drton
Betreuer:
David Strieder
Jahr:
2022
Quartal:
3. Quartal
Jahr / Monat:
2022-07
Monat:
Jul
Seiten/Umfang:
78
Sprache:
en
Hochschule / Universität:
Technische Universität München
Fakultät:
TUM School of Computation, Information and Technology
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
Annahmedatum:
27.07.2022
 BibTeX