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Abstract

Learning causal structures plays an important role in various fields, ranging from

biology and clinical medicine to economics and many others. Since using controlled

experiments is often not possible due to cost or ethical reasons, causal discovery

based on only observational data is an interesting topic of research. In order to study

causal structures researchers often employ Structural Equation Models (SEM). In

general the true underlying causal structure can not be uniquely identified. To avoid

this problem, constrained version of SEM’s can be considered. However, if we would

like to have a flexible model which can describe data generation process in real life,

the constraints should not be too strict. Post-Nonlinear (PNL) causal models are

quite general form of SEM’s, which include many other models discussed in the

literature, such as Linear SEM’s and Additive Noise Models.

This thesis studies both bivariate and multivariate PNL models under the as-

sumption of Gaussian noise. We employ Linear Transformation Models and esti-

mate the involved parameters with Pairwise-Rank likelihood methods. Furthermore

we prove asymptotic normality and consistency of our proposed estimates. Using

those results, we developed computationally fast algorithms to estimate the causal

ordering within PNL models and prove consistency with high probability. The per-

formance of our method is evaluated on simulated data. At the end, general PNL

models (not necessarily with Gaussian noise) have been discussed by showing how

the same ideas can be transferred to general models.
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1 Introduction

Discovering causal structure of a system is an important question in various dis-

ciplines, i.e. biology, economics, clinical medicine, neuroscience and many other

domains [Opgen-Rhein and Strimmer, 2007, Glymour et al., 2019, Moneta et al.,

2013]. Since using controlled experiments is often not possible due to cost or ethical

reasons, causal discovery based on only observational data is an interesting topic of

research [Spirtes and Zhang, 2016].

There are various methods for causal structure discovering such as constraint-

based or scored-based but these methods identify the causal structure only up to

Markov equivalence class [Spirtes et al., 2000], which can leave some causal direc-

tions undetermined. In order to deal with this problem Structural Equation Models

(SEM) have been proposed, which in their general form have identifiable issues and

so they should be constrained (discussed later in this section in more detail).

In the case when data generation process is simple (i.e. effect is a linear combi-

nation of its causes added by some noise) it would be sensible to use linear SEM’s;

however, in reality data generating process might be very complex and linear struc-

tural equation models will not be able to approximate the process properly. So,

more flexible models are necessary in these situations and the following models have

been proposed. Additive Noise Models (ANM) [Hoyer et al., 2008, Peters et al.,

2014], where the effect is some nonlinear function of its causes added by a noise

independent from the causes. Post-Nonlinear (PNL) models [Zhang and Hyvärinen,

2009], where on top of the ANM there is a nonlinear distortion to obtain the effect

and more generally Functional Causal Models (FCM) [Peters et al., 2011], where

effect is some nonlinear function from its causes and a noise independent from the

causes.

In this work we are mainly focused on the PNL models where the noise variables

are from a Gaussian distribution and call them Post-Nonlinear Gaussian (PNLG)

causal models. Then, obtain algorithms which will discover underlying causal re-

lationships in the case of PNLG assumptions are satisfied. The rest of the section

introduce some notations, give a brief introduction about Directed Acyclic Graphs

(which are used in the SEMs) and then give the definition of SEMs and then define

PNL and PNLG models.

1.1 Notations

Throughout the work random variables and random vectors are denoted by upper

case letters, i.e. X, Y, Z. Their corresponding observed values are denoted by lower-
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case letters, i.e. x, y, z. Vectors are assumed to be column vectors and for a random

vector X its kth element is usually denoted by X(k). For a random vector X its

joint distribution function is denoted by PX . If the joint distribution PX of a ran-

dom vector X has density with respect to Lebesgue measure, usually we denote the

density function by pX(x) if otherwise is not mentioned. Similarly, we denote the

distribution function of X by FX . Matrices are denoted by bold upper case letters,

i.e. X,A,B. The indicator function is denoted by I{·}, i.e. I{3 < 10} = 1 and

I{2 + 3 = 9} = 0. The set {1, 2, . . . ,m} is denoted by [1,m].

In the text we use different types of convergence of random vectors and here are

their notations. For some random vectors X,X1, . . . , we write Xn
a.s.→ X if we mean

Xn converges to X almost surely. We write Xn
p→ X if we mean Xn converges to

X in probability and Xn
d→ X if we mean Xn converges to X in distribution. Their

corresponding definitions are stated in the Appendix.

1.2 Directed Acyclic Graphs

A graph G = (V, E) consists of a finite set of nodes V and edges E ⊆ V ×V of ordered

pairs of distinct nodes. Given a set of random variables X = (X(1), . . . , X(m)),

V := {1, . . . ,m} and a graph G = (V, E) we associate every random variable X(j)

with node j ∈ V . The joint distribution of X is denoted by PX and marginal

distribution of Xj by PXj . A graph G1 = (V1, E1) is called a subgraph of G if

V1 ⊆ V and E1 ⊆ E and G is called a super graph of G1. If G1 is a subgraph of G
we write G1 ≤ G and if E1 ̸= E we say G1 is proper subgraph of G and and G is

called a proper super graph of G1.
A node i is called a child of j if (j, i) ∈ E and is called a parent if (i, j) ∈ E . If

(i, j) ∈ E we also write i→ j. Children of j is denoted by CHG
j := {i ∈ V : (j, i) ∈

E} and parents of j by PAG
j := {i ∈ V : (i, j) ∈ E}. Two nodes i and j are called

adjacent if (j, i) ∈ E or (i, j) ∈ E and if both holds we say the edge between i and j

is undirected, otherwise directed. A graph is called complete if every two nodes

are adjacent. Cliques of a graph G are the maximal complete subgraphs of G (here

maximal in a sense of set inclusion). A path in G is a sequence of distinct nodes

j1, . . . , jn such that jk and jk+1 are adjacent ∀k = 1, . . . , n−1 and n ≥ 2. If jk → jk+1

∀k = 1, . . . , n− 1 path is called directed from j1 to jn. We say j is a descendant

of i if there is a directed path from i to j and denote all the descendants of j by DEG
j

and all non-descendants by NDG
j . Note that descendants and non-descendants do

not contain the node. jk is called a collider in the path if jk−1 → jk and jk+1 → jk.

G is called a partially directed acyclic graph (PDAG) if there is no directed

cycle, i.e., if there is no pair (i, j) such that there are directed paths from i to j and
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from j to i. G is called directed acyclic graph (DAG) if all edges are directed

and there is no cycle in G. Permutation π of 1, 2, . . . ,m is called a order of a DAG

G if for every i < k, π(i) is not a descendant of π(k). Three nodes i, j, k are called

immorality or v-structure if one of them, say j is a child of the others and these

parents are not adjacent: i → j, k → j and (k, i) /∈ E , (i, k) /∈ E . The skeleton of

graph G is the set of all edges without taking the direction into account, that is all

(i, j) such that i→ j or j → i.

In a DAG G = (V, E), a path between i and j is blocked by S ⊊ V (i, j /∈ S)

whenever there is a node k in the path and one of the following holds:

1. k ∈ S and k is not a collider in the path, or

2. k /∈ S and k is a collider in the path and ∀l ∈ DEG
k =⇒ l /∈ S.

Given disjoint subsets A,B,C, we say A and B are d-separated by C if every

path between nodes in A and B is blocked by C. Independence (conditional) is

denoted by ⊥⊥. The joint distribution PX of X is said to be Markov with respect

to the DAG G if

A,B d-sep. by C =⇒ A ⊥⊥ B|C.

for all disjoint sets A,B,C ⊆ V . We say PX is faithful to the DAG G if

A,B d-sep. by C ⇐= A ⊥⊥ B|C.

for all disjoint sets A,B,C ⊆ V . A distribution satisfies causal minimality with

respect to graph G if it is Markov with respect to G, but not to any proper subgraph

of G. Let’s denote M(G) := {PX : PX is Markov w.r.t. G} all the distributions

which are Markov with respect to G. Two DAGs G1 and G2 are called Markov

equivalent if M(G1) = M(G2). This holds if and only if G1 and G2 satisfy same

set of d-separations. The set of all DAGs that are Markov equivalent to some

DAG is called Markov equivalence class. A Markov equivalence class of DAGs

can be uniquely represented by a completed partially directed acyclic graph

(CPDAG), which is a PDAG that satisfies the following: 1) i→ j in the CPDAG

if i→ j in every DAG in the Markov equivalence class, 2) i−j in CPDAG if Markov

equivalence class contains a DAG where i → j and contains another DAG where

i← j.

1.3 Structural Equation Models

A structural equation model (SEM) is defined as a tuple (S,Pε), where S = (S1, . . . , Sm)

is a collection of m equations

Sj : X(j) = fj(PAj, εj), j = 1, . . . ,m (1)
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and Pε = Pε1,...,εm is the joint distribution of noise variables and we assume that

noise variables are jointly independent. Given a SEM (S,Pε) corresponding graph

of the structural equation is a DAG where the nodes are (1, . . . , p) corresponding

to the random variables (X(1), . . . , X(m)) and the edges are determined from the

equations by drawing a edge from each node in PAj (which appears on the right

hand side of equation Sj) to node j.

Although SEM defined in (1) is in a general form and very flexible, it turns

out that for each joint distribution of PX which is Markov with respect to a graph

G there is SEM with respect to the graph G that generates distribution PX . So,

only the CPDAG is possible to recover from the joint distribution. The following

proposition is the formal version of it.

Proposition 1.1. (Proposition 9 of Peters et al. [2014])

Let the joint distribution PX of X = (X(1), . . . , X(m)) is Markov with respect to G
and it has positive density with respect to Lebesgue measure. Then there exists an

SEM with graph G that generates the distribution PX .

The above Proposition 1.1 shows that in general SEMs it is only possible to

obtain the Markov equivalence class of the underlying true graph. So, in order to

obtain a unique graph from a joint distribution it is natural to put some restriction

on the functions fj in SEMs. The following subsection defines the restricted SEMs

included ANM and PNL models.

1.4 ANM, PNL and PNLG Definitions

In this subsection we introduce the ANM, PNL and PNLG causal models and discuss

the identifiability of them. Bivariate ANM models studied in the paper [Hoyer

et al., 2008], their identifiability results can be found in [Peters et al., 2014] and the

following is the definition.

Definition 1.1. (ANM Causal Models)

Additive Noise Model (ANM) is a SEM (S,Pε) with equations

Sj : X(j) = fj,1(PAj) + εj, j = 1, . . . ,m (2)

where PAj are the parents of Xj such that the corresponding graph is acyclic.

Noise variables εj for j = 1, 2, . . . ,m are independent of corresponding parents ran-

dom variables PAj i.e., εj ⊥⊥ PAj, and are jointly independent. The functions fj,1

for j = 1, 2, . . . ,m are potentially nonlinear effects of causes PAj.
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ANM models allow only that noise variable can be part of the effect in additive

way, which is quite restrictive and in real world data generating processes might be

more complex. The following PNL model overcomes this problem and it is strictly

larger class of ANM’s, i.e. taking fj,2 as identity gives ANM models and taking fj,2

as an exponent, noise will be part of an effect multiplicative way.

Definition 1.2. (PNL Causal Models)

Post-Nonlinear (PNL) causal model is a SEM (S,Pε) with equations

Sj : X(j) = fj,2(fj,1(PAj) + εj), j = 1, . . . ,m (3)

where PAj are the parents of Xj such that the corresponding graph is acyclic.

Noise variables εj for j = 1, 2, . . . ,m are independent of corresponding parents ran-

dom variables PAj i.e., εj ⊥⊥ PAj, and are jointly independent. The functions fj,1

for j = 1, 2, . . . ,m are potentially nonlinear effects of causes PAj and the functions

fj,2 are invertible post-nonlinear distortions in variable X(j) for j = 1, 2, . . . ,m.

Bühlmann et al. [2014] studied ANM models in the case when fj,1 functions are

additive and developed an algorithm to discover underlying graph and proved that

discovered causal order is consistent when number of observations goes to infinity.

However, the PNL models are not so well studied. Zhang and Hyvärinen [2009]

proved identifiability results of bivariate PNL case and suggested an algorithm for

it. Peters et al. [2014] after studying identifiability of ANM models, mentions that

similar identifiability results hold for the PNL multivariate case, but the estimation

of the causal relations is not discussed. Lately Uemura and Shimizu [2020], Ue-

mura et al. [2022] suggested neural network approach for estimating the underlying

causal structure for bivariate and multivariate cases respectively. To my knowledge

[Uemura et al., 2022] is the only practical algorithm exist for the multivariate PNL

models and we discuss it in Section 4 more in detail.

Since, throughout the text we use PNL Gaussian models many time let us define

them in the following, which adds a restriction to PNL model that noise variables

are standard normal.

Definition 1.3. (PNLG Causal Models)

Post-Nonlinear Gaussian (PNLG) causal model is a SEM (S,Pε) with equations

Sj : X(j) = fj,2(fj,1(PAj) + εj), j = 1, . . . ,m (4)

where PAj are the parents of Xj such that the corresponding graph is acyclic.

Noise variables εj for j = 1, 2, . . . , p are independent of corresponding parents ran-

dom variables PAj i.e., εj ⊥⊥ PAj, are jointly independent and distribution is stan-

dard normal, i.e. εi ∼ N (0, 1). The functions fj,1 for j = 1, 2, . . . ,m are potentially
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nonlinear effects of causes PAj and the functions fj,2 are invertible post-nonlinear

distortions in variable X(j) for j = 1, 2, . . . ,m.

Note that we need the assumption of mean zero and unit variance of noise vari-

ables to have identifiability of the parameters in the model, if noise variables do not

have mean zero and unit variance they can be consumed in functions fj,2 and fj,1,

which is discussed later in the text in more detail.

Our main goal is to deal with PNLG models but we will also consider the PNL

models their advantages and disadvantages.

Now, let us consider equations in PNL model (3) to understand the structure of

the remaining text. Firstly, we will look at one equation in SEM for fixed j ∈ [1,m]

in order to understand its properties. For this purpose we will simplify more and

assume fj,1 is linear function and it will result Y = fj,2(X
Tβ + ε). In our first

step we look at the case when the functions fj,1 are linear which is called Linear

Transformation Models and study it in Section 2. Then we will move in general

case and study the model Y = fj,2(fj,1(X)+ ε) in Section 3. Note that in the above

mentioned two Sections we will have slightly different notations for convenience and

assume that the function (and its inverse) fj,2 is strictly increasing. In Section 4 we

study estimation of the causal structure of PNLG and PNL models in bivariate and

multivariate cases separately using the results from Sections 2 and 3. Then, Section

5 reviews the experimental results and comparison with other existing methods and

Section 6 concludes the text. Some of the proofs which are technical postponed in

Appendix A.

2 Linear Transformation Models

This section is a review of Linear Transformation Models in the literature, how

the parameters are estimated in that models and development of new estimation

methods. The experimental results are presented in the Section 5.

Let’s assume that our data (X, Y ) is generated by the following Linear Trans-

formation Model

h(Y ) = XTβ0 + ε, (5)

where X ∈ Rm, Y ∈ R for some m ∈ N, β0 = [β0,1, . . . , β0,m]
T , ε is a noise variable

independent of X, i.e. ε ⊥⊥ X and h : R → R is invertible and strictly increasing

function, i.e. a < b implies h(a) < h(b). In general X is not necessarily random;

however, since in the Post-Nonlinear causal models it is generated by some structural

equations, here we are assuming it is a random. In case it is assumed to be not

random will be mentioned explicitly.
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Before analyzing the above Linear Transformation Model let us show that it is

a quite general model in a sense that it includes many other models that have been

a interest in the literature.

1. Linear Regression Model:

In the case of function h is specified model (5) is a simple linear regression

model and we can estimate the β by maximum likelihood method or least

squares method.

2. Box and Cox transformation:

In the case of function h is specified in the following parametric way

h(y) =


yλ−1
λ
, λ ̸= 0

log(y), λ = 0

gives the Box and Cox transformation model [Box and Cox, 1964]. The trans-

formation is specified by a parameter λ, which produces from linear (λ = 1)

to log (λ = 0) transformed regression models. Box and Cox [1964] considered

Gaussian distributed error and estimated the parameter λ by maximizing the

likelihood.

3. Proportional Hazard (Cox PH) Model

Let us assume that the function h is specified in the following way

h(y) = log(− log(1− g(y))),

where g(y) = 1−exp(−
∫ y
0
r(t)dt), r(t) = f(y)

1−F (y)
for for probability density and

cumulative density functions of Y correspondingly and noise is from extreme

value distribution. Then this models is called Proportional Hazard model and

β is estimated using partial likelihood method [Cox, 1972, 1975].

Now let us look at the Linear Transformation model without any further assump-

tions. The following papers [Cuzick, 1988, Pettitt, 1982, 1984, 1987, Doksum, 1987,

Clayton and Cuzick, 1985, 1986] are some existing results of Linear Transforma-

tion Models in the literature where the distribution of the noise variable is usually

assumed to be known. In the [Han, 1987, Abrevaya, 1999a, Sherman, 1993] pa-

pers Maximum Rank Correlation (MRC) is introduced for estimation of β in Linear

Transformation Model with unknown noise distribution and asymptotic properties

proved. The Maximum Rank (MR) estimator is introduced by Cavanagh and Sher-

man [1998] and PDR (there are several versions of these estimators) estimators are
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introduced by Abrevaya [1999a,b, 2003]. Lately, Yu et al. [2021] introduced a Pair-

wise Rank Likelihood (PRL) method to estimate the β and distribution function

of the noise variable and their asymptotic properties derives. We will consider this

method in more detail later to obtain estimator in the case when the distribution of

the noise variable is Gaussian.

Before looking at the methods to estimate β let us analyze the Linear Transfor-

mation Model and understand in which scenarios it is not possible to identify the

parameters. Let (Xi, Yi)
n
i=1 be n i.i.d. copies from the model (5), R = (R1, . . . , Rn)

be the ranks of Y = [Y1, . . . , Yn]
T . Denote Zi := h(Yi) and note, that by the as-

sumption of strictly increasing h the ranks of Y and Z := [Z1, . . . , Zn]
T are exactly

the same. Assume observed data is (xi, yi)
n
i=1 and r = (r1, . . . , rn) be the observed

ranks, i.e. ranks of [y1, . . . , yn] and denote X := [xT1 , . . . , x
T
n ]
T ∈ Rn×m the design

matrix.

Note that, replacing XTβ by α +XTβ and ε by ε − α in the model (5) all the

model assumptions still be satisfied. Moreover, the same is true if for any σ > 0, we

replace h(Y ) by σh(Y ), ε by σε and β0 by σβ0. So, without loss of generality we

can assume that the noise variable satisfies the following requirements

E[ε] = 0 and V ar(ε) = 1, (6)

otherwise, it will not be possible to identify the parameters uniquely from the model

(5), i.e. assume true parameters in the model are h, β0, ε is a random variable from

some arbitrary distribution and (X, Y ) is generated from the model, then we also

have h′(Y ) = α + XTβ′
0 + ε′, where h′ := σh, β′

0 := σβ0 and ε′ = σε − α, which

means that the parameters of the model will not be uniquely identified if we do not

put any more restrictions like (6).

In the following most methods are based on some kind of rank likelihood. First,

let us investigate some properties of the marginal rank likelihood and discuss some of

the limits of information contained in ranks. We denote the marginal rank likelihood

by

L(β; r,X) := P(Y β
j has rank rj for j ∈ [1, n]) = P(Rβ = r)

= P(Zβ
j has rank rj for j ∈ [1, n])

=

∫
{z∈r}

n∏
i=1

f0(zi − xTi β) dzi ,

(7)

where the notation {z ∈ r} is the set {z1, . . . , zn} which have ranks r, X :=

[xT1 , . . . , x
T
n ]
T ∈ Rn×m, f0 is the probability density function of noise variable εi

for i ∈ [1, n] and Y β
j := h−1(xTj β + εi), Z

β
j := h(Y β

j ).

Now, having defined the marginal rank likelihood, let’s understand in what cases

it is not possible to obtain any information from it. For simplicity let’s consider the
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case when there is only one covariate i.e., m = 1 and analyze the range of β’s which

will not change the rank likelihood. The following proposition shows that for large

β’s the value of rank likelihood is the same with high probability in the Gaussian

noise case, i.e. εi ∼ N (0, 1).

Proposition 2.1. Assume there are n observed samples (xi, yi)
n
i=1 from model (5)

for some fixed β0, corresponding εi
i.i.d.∼ N (0, 1) and xi ̸= xj for all i ̸= j. Let’s fix

arbitrary small δ > 0 and define Kδ,n :=
⌊√

2 log 2n
δ

⌋
+ 1 and mX := mini ̸=j{|xi −

xj|}. Then with probability at least 1− δ

L(β; r,X) is constant for all β >
2Kδ,n

mX

or β < −2Kδ,n

mX

,

where r is the ranks of yi’s.

Proof. The idea of the proof is to obtain some bound for the noise variables with

high probability and using it make the gaps between xTi β’s large enough that adding

a noise will preserve the ranks with the same probability.

For exact proof let’s estimate the probability that all noise variables are bounded

by Kδ,n that is

P(|εi| ≤ Kδ,n for all i ∈ [1, n]) = 1− P(∃i ∈ [1, n] such that |εi| > Kδ,n)

≥ 1−
n∑
i=1

P(|εi| > Kδ,n) = 1− nP(|ε1| > Kδ,n)

≥ 1− 2ne−K
2
δ,n/2 ≥ 1− δ,

where the first inequality follows from the union bound and the second one is a direct

application of Chernoff(i. e., exponential Markov inequality) bound for standard

normal random variables.

Now having a uniform bound on the noise variables, we can show that for arbi-

trary β >
2Kδ,n

mX
the ranks of Zβ

i := xTi β + εi are the same as ranks of xi’s. For that

purpose assume that all noise variables are bounded by Kδ,n which we know from

the uniform bound that holds with at least 1− δ probability. Let’s fix two different

indices i and j. Without loss of generality we can assume that xi < xj so,

Zβ
j − Z

β
i = xjβ + εj − xiβ − εi = (xj − xi)β + εj − εi
≥ mXβ + εj − εi > 2Kδ,n + εj − εi ≥ 0.

This shows that the ranks of Zβ
i ’s are preserved for the mentioned range of β’s.

So, from 7 we have L(β; r,X) = P(Zβ
j has rank rj for j ∈ [1, n]) and so, it is not

changing with probability at least 1− δ as the Zβ
j ’s will be fixed. Note that the case
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where β < −Kδ,n

mX
is the same besides we will have same ranks for −Zβ

i ’s and xi’s,

which completes the proof.

In order to have an idea how large can be the value
2Kδ,n

mX
in the Proposition 2.1,

let’s assume mX = 1, which means that minimum distance between xi’s is 1 and

take n = 1000 samples with δ = 0.01. Inserting this quantities in the formula stated

in the Proposition we obtain
2Kδ,n

mX
= 10. This shows that in the case when xi’s are

far far each other, i.e. difference is at least 1, then with probability 0.99 marginal

rank likelihood cannot differentiate between betas larger than 10.

Note that in the Proposition 2.1 we needed the Gaussian distributed noise vari-

ables only to have exponential decaying tails of this distribution. So, the similar

statement is true for all noise variables which have a exponentially decaying tails,

i.e. distribution of subgaussian random variables. In case of heavy tail distributions

like subexponentials, we will have larger bound on β.

The remaining part of this Section reviews some existing results on the Lin-

ear Transformation Models, describes the Algorithms to estimate the parameters,

reviews their properties (asymptotic) and develops new method and studies its prop-

erties (asymptotic).

2.1 Monte Carlo Method

In order to be be able to use Monte-Carlo methods to estimate the rank likeli-

hood, firstly, it should be represented as an expectation. Assuming noise variable is

standard normal, from equation 7 we have

L(β; r,X) =

∫
{z∈r}

n∏
i=1

ϕ(zi − xTi β) dzi =

∫
{z∈r}

n∏
i=1

ϕ(zi − xTi β)
ϕ(zi)

ϕ(zi) dzi

= EZ∼N (0,In)

[
n∏
i=1

ϕ(Zi − xTi β)
ϕ(Zi)

∣∣∣∣∣{Z ∈ r}
]

= EZ∼N (0,In)

[
n∏
i=1

ϕ(Zri − xTi β)
ϕ(Zri)

∣∣∣∣∣{Z ∈ r}
]
=

1

n!
E

[
n∏
i=1

ϕ(Zri − xTi β)
ϕ(Zri)

]
,

where ϕ is a pdf function of standard normal random variable and Z1 < Z2 < · · · <
Zn are order statistics from standard normal distribution of size n. The last equality

in the above follows from the fact that (Zi)
n
i=1 are i.i.d. and so it is symmetric and

{Z ∈ r} is equiprobable for each r and since there are n! possible rankings we have

P({Z ∈ r}) = 1
n!
. Using the above equality, Doksum [1987] suggested to estimate it

by Monte Carlo method. The Monte Carlo estimator of the rank likelihood can be

written as

15



n!L̂(β; r,X) :=

∑M
i=1

∏n
j=1

ϕ(Zi
rj
−xTj β)

ϕ(Zi
rj
)

M
, (8)

where Zi := {Zi
1, . . . , Z

i
n}T is the order statistics of ith sample from the standard

normal distribution and M is the number of samples. Using the strong law of large

numbers, it is clear that

L̂(β; r,X)→ L(β; r,X) almost surely as M →∞. (9)

In practice, we generate zi := {zi1, . . . , zin}T order statistics of ith generation

sample from the standard normal distribution of size n and substitute them in

equation 8.

Now let’s understand how the quantity in equation 8 can be maximized. Denot-

ing

li :=
n∏
j=1

ϕ(zirj − x
T
j β)

ϕ(zirj)

and recalling that ϕ is the pdf of standard normal distribution we obtain

−2 log li = −2
n∑
j=1

log

(
ϕ(zirj − x

T
j β)

ϕ(zirj)

)
=

n∑
j=1

((zirj − x
T
j β)

2 − (zirj)
2)

= −2
n∑
j=1

zirjx
T
j β +

n∑
j=1

(xTj β)
2 = −2zirXβ + βTXTXβ

= bTXTXb− 2zirXβ + βTXTXβ − bTXTXb

= (bi − β)TXTX(bi − β)− SSFi,

where zir := (zr1 , . . . , zrn) is the ith sample of normal distribution of size n which has

rank r, bi := (XTX)−1XT zir is the usual least square estimate of β for the response

vector zir and SSFi is fitted sum of squares, i.e. SSFi := (ẑir)
T ẑir = bTi X

TXbi. Note

that bi and SSFi does not depend on β. Inserting this in (8) gives the monte carlo

estimate of the rank likelihood, i.e.

n!L̂(β; r,X) =

∑M
i=1wiexp(−

1
2
(bi − β)TXTX(bi − β))
M

, (10)

where wi := exp(1
2
SSFi). This estimate is proportional to mixture of multivariate

normal densities. To maximize the likelihood we calculate the gradient

∇βL̂(β; r,X) =
1

Mn!

M∑
i=1

wiui(β)X
TX(bi − β) =

XTX

Mn!

M∑
i=1

wiui(β)(bi − β) = 0,

where

ui(β) := exp

(
−1

2
(bi − β)TXTX(bi − β)

)
. (11)
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Assuming X has full column rank, it implies that XTX is invertible and so, the

above is equivalent to

M∑
i=1

wiui(β)(bi − β) = 0 ⇐⇒ β

M∑
i=1

wiui(β) =
M∑
i=1

wiui(β)bi

⇐⇒ β =
M∑
i=1

wiui(β)∑M
j=1wjuj(β)

bi.

Using the reweighted method we obtain iteratively reweighted least square algorithm

βk+1 =
M∑
i=1

wiui(β
k)∑n

j=1wjuj(β
k)
bi, (12)

where k = 0, 1, . . . and β0 is some initial value for β. Thus Monte Carlo algorithm

can be described as in the following Algorithm 1.

Algorithm 1: Monte Carlo Algorithm

Require: X, Y , M, maxit (maximum iterations).

r ← rank(Y )

for i = [1,M ] do

zi := (zi1, . . . , z
i
n)← n i.i.d. sample from N (0, 1)

zir ← (zir1 , . . . , z
i
rn)

bi ← (XTX)−1XT zir

logwi ← bTi X
TXbi/2

end for

β0 ← random vector with the size of columns of X

for k = [0,maxit− 1] do

for i = [1,M ] do

log ui(β
k)← −1

2
(bi − βk)TXTX(bi − βk)

logweightsi ← log ui(β
k) + logwi

end for

rw ← softmax(logweights)

βk+1 =
∑M

i=1 rwibi
end for

β̂MC ← βmaxit

Return β̂MC .

In the Algorithm 1 logarithms of the weights are introduced in order to circum-

vent the problem of overflow/underflow of the weights and softmax function should

be numerically stable. One such example is describe in the Algorithm 2.
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Algorithm 2: Numerically Stable Softmax Algorithm

Require: x := (x1, . . . , xn)
T .

c← maxi∈[1,n]{xi}
y ← (x1 − c, . . . , xn − c)T

s←
∑n

i=1 exp(yi)

z ← (exp(y1)/s, . . . , exp(yn)/s)
T

Return z.

Note that in Algorithm 2 the fact that softmax(x) = softmax(x − c) is used

and after subtracting the max element from all elements in the input x we will end

up at least one element which is zero and others are at most zero, so, overflow is not

an option already. For the case of underflow since there at least one element equal

to zero implies that underflow cannot happen to all elements, so, it will produce

reasonable result.

In the paper [Doksum, 1987] no general asymptotic property of β̂MC has been

showed, but it is mentioned (Remark 3.2 in [Doksum, 1987]) that for proportional

hazard two-sample model case β̂MC is asymptotically normal.

2.2 Substitution of Conditional Expectation Method

This subsection is a review and development of corresponding algorithm of [Cuzick,

1988] paper. In the paper it is assumed that distribution of the noise variable is

known, but is not necessarily standard normal. From 7 we have that rank likelihood

is the following

L(β; r,X) =

∫
{z∈r}

n∏
i=1

f0(zi − xTi β) dzi , (13)

where f0 is the probability density function of the noise variable. In order to maxi-

mize the likelihood we calculate the gradient of the log likelihood, which gives

∇β logL(β; r,X) =
n∑
i=1

xiER
[
−f

′
0(zi − xTi β)
f0(zi − xTi β)

]
=

n∑
i=1

xiER[h0(zi − xTi β)] = 0, (14)

where

ER [g(zi)] =

∫
{z∈r} g(zi)

∏n
j=1 f0(zj − xTj β) dzj∫

{z∈r}
∏n

j=1 f0(zj − xTj β) dzj
is the conditional expectation of g(zi) given the ranks R and β for some function g

and

h0(t) := −
f ′
0(t)

f0(t)
.

Since, ER[h0(zi − xTi β)] depends on β not in a simple way, some substitutions

of it have been proposed. For instance Clayton and Cuzick [1985, 1986] suggested
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to replace it by h0(ER[zi]− xTi β) which makes no replacement for the case of Gaus-

sian noise variable. Cuzick [1988] suggested the following substitution and studied

asymptotic normality. Let

F̂ (z) =
1

n+ 1

n∑
i=1

1{zi ≤ z} (15)

be the adjusted empirical distribution function of zi and denoting the CDF of ran-

domly chosen zi by Fβ(z), we will have

Fβ(z) =
1

n

n∑
i=1

F0(z − xTi β), (16)

where F0 is the CDF of the noise variable. So, the substitution is to replace

ER[h0(zi − xTi β)] by h0(z̄
β
i − xTi β), where

z̄βi := F−1
β (F̂ (zi)) for zi := h(yi) (17)

and denote z̄β := [z̄β1 , . . . , z̄
β
n ]. Note that for the computation of z̄β for fixed β we

only need to know the ranks of zi’s which we know as it is the same as the ranks of

yi’s. Thus, equation 14 will be replaced by

n∑
i=1

xih0(z̄
β
i − xTi β) := 0 (18)

After the estimation of β as β̂, the value of h(yi) can be estimated by z̄β̂i , i.e.

ĥ(yi) := z̄β̂i (19)

Now moving to the case for standard normal noise variable, we have h0(t) = t,

so equation 18 becomes

0 =:
n∑
i=1

xi(z̄
β
i − xTi β) = XT z̄β −XTXβ = XTF−1

β (F̂ (z))−XTXβ

= XTF−1
β

(
r

n+ 1

)
−XTXβ := G(β),

where the CDF functions and its inverses applied element wise to vector arguments.

Cuzick [1988] in the Extensions section part 5 claims that G(β) = 0 has a unique

solution, but it turns out to be wrong as stated in the correction part of the paper

that there is an error in the proof of the claim in Lemma 5 that there is a unique

solution for G(β) form = 1 as well asm > 1 (note, G(β) corresponds to the equation

7 in the paper when noise variable is standard normal). However, assuming that β̂
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which makes G(β) zero we can find by the fixed point iteration algorithm, we will

have

βk+1 := (XTX)−1XTF−1
βk

(
r

n+ 1

)
(20)

for kth iteration, where β0 is some initial value for β. So, it will produce an es-

timator which could satisfies the properties that are established in Cuzick [1988]

and described at the end of this subsection. The description of the procedures is

described in the following Algorithm 3.

Algorithm 3: Fixed Point Algorithm

Require: X, Y , maxit (maximum iterations), root finding algorithm.

r ← rank(Y )

β0 ← random vector with the size of columns of X

for k = [0,maxit− 1] do

for i = [1, n] do

ti ← F−1
βk

(
ri
n+1

)
, using root finding algorithm for Fβk(ti)− ri

n+1
= 0

end for

t← (t1, . . . , tn)
T

βk+1 ← (XTX)−1XT t
end for

β̂FP ← βmaxit

Return β̂FP .

In the above Algorithm 3 the most computational expensive part is the compu-

tations of ti’s, which has to be done at each iteration of fixed point for all i ∈ [1, n].

It is not possible to circumvent this computation since it is not possible to obtain

the closed form of the inverse of Fβ function.

In order to reduce the computational complexity, we can propose stochastic

version of this algorithm which will reduce the complexity significantly. Since, only

the ranks of yi’s are used in the algorithm, reasonable size of random subset of yi’s

could approximate the ranks and so we can take corresponding xi’s and do the fixed

point updated at each step. Thus, it will be the following Algorithm 4.
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Algorithm 4: Stochastic Fixed Point Algorithm

Require: X, Y , bs (batch size), maxit (maximum iterations), root finding

algorithm.

β0 ← random vector with the size of columns of X

for k = [0,maxit− 1] do
I ← random subset of [1, 2, . . . , n] with size bs

Ybs ← Y [I], take the elements from Y corresponding to indices I

Xbs ← X[I] , take the rows from X corresponding to indices I

rbs ← rank(Y )

for i = [1, bs] do

ti ← F−1
βk

( rbs,i
n+1

)
, using root finding algorithm for Fβk(ti)− rbs,i

n+1
= 0

end for

t← (t1, . . . , tbs)
T

βk+1 ← (XT
bsXbs)

−1XT
bst

end for

β̂SFP ← βmaxit

Return β̂SFP .

In the Algorithm 4 batch size bs can be chosen as big as possible to run the

algorithm, but since in the experiments different batch sizes produced similar results,

we have fixed it to be 64.

The main theoretical result of Cuzick [1988] are the followings.

Theorem 2.1. (Theorem 1 in [Cuzick, 1988])

If the assumptions (A1)-(A6) in [Cuzick, 1988] are satisfied, then with probability

tending to one as n→∞ there exists a solution β̂ to the equation

n∑
i=1

xih0(z̄
β
i − xTi β) = 0,

such that as n→∞
√
n(β̂ − β0)→ N (0, σ2),

where σ2 as is specified in Theorem 1 at [Cuzick, 1988] and β0 is the true value of

β given in model (5).

Note that the proofs in [Cuzick, 1988] are presented only for the case of m = 1

but it is mentioned that they are straightforward for all m.

2.3 Expecting Rank Method

Since, Expected Rank method is using the expectation of the ranks of Yi’s, let’s

prove the following lemma about it.
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Lemma 2.1. Let Rj be the rank of Yi among {Yi}ni=1 in the model 5 as well as the

rank of Zi : −f−1
2 (Yi), for all j ∈ [1, n] and the noise variable is standard normal.

Then

E[Rj] = 1 +
∑
i ̸=j

Φ

(
(xj − xi)Tβ√

2

)
,

where Φ is the CDF of standard normal distribution.

Proof. Let’s fix any j ∈ [1, n]. Since the rank Rj is the number of Zi’s (i ̸= j)

less than Zj plus one(note that since the distribution of Zi’s are continuous, i.e.

Gaussian, equality holds with probability zero), we obtain

E[Rj] = E

[
1 +

∑
i ̸=j

1{Zi<Zj}

]
= 1 +

∑
i ̸=j

E
[
1{Zi<Zj}

]
= 1 +

∑
i ̸=j

P(Zi < Zj) = 1 +
∑
i ̸=j

P(Zi − Zj < 0)

= 1 +
∑
i ̸=j

P
(
(Zi − Zj)− (xi − xj)Tβ√

2
<

(xj − xi)Tβ√
2

)
= 1 +

∑
i ̸=j

Φ

(
(xj − xi)Tβ√

2

)
,

where the last equation follows from the fact that Zi − Zj is Gaussian with mean

(xi−xj)T and variance 2 (since Zk’s are independent Gaussians with mean xTi β and

variance one for all k ∈ [1, n]).

The idea of expected rank method is to make observed ranks of Zi’s (note that

Yi’s are observed and they have the same rank as Zi’s) close to their corresponding

expected ranks. The meaning of the word close is not exact here and it can be

realized in different ways, i.e. minimizes the Lp norm of observed and actual expected

ranks for p ≥ 1. In the paper [Pettitt, 1987] the author suggested to minimize the

square of L2 norm, that is

S(β) :=
n∑
j=1

(rj − E[Rj])
2.

Using the Lemma 2.1 we obtain

S(β) =
n∑
j=1

(
rj −

(
1 +

∑
i ̸=j

Φ

(
(xj − xi)Tβ√

2

)))2

. (21)

As Pettitt [1987] noted, if there is a value of β, i.e. β0 such that xTj β0’s have the

same rank as Zi’s then letting βλ := λβ0 and λ→ +∞ will minimize S(β), since

Φ

(
(xj − xi)Tβλ√

2

)
→ 1 if xTj βλ > xTi βλ and
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Φ

(
(xj − xi)Tβλ√

2

)
→ 0 if xTj βλ > xTi βλ as λ→ +∞,

which gives that

1 +
∑
i ̸=j

Φ

(
(xj − xi)Tβλ√

2

)
→ Rj as λ→ +∞ =⇒ S(β)→ 0 as λ→ +∞.

The above statement shows that in the case of perfect matching of the ranks of Zi’s

and xTi β’s the minimization problem of S(β) is ill-posed. In general (i.e. if the noise

changes the ranks of zi’s from xi’s in one dimension) numerical experiments show

that the function S(β) can be be both increasing and decreasing when ∥β∥ → ±∞,

which suggests that in some cases minimum (local) of the function S(β) is achieved

when ∥β∥ → ±∞ and in some cases minimum (local) will not be achieved in infinity.

Moreover, numerical experiments show that it is not necessary that actual value of

β is a local minimum of S(β), i.e. the function in decreasing at that point, but for

the case of n→∞ it might be improved.

To circumvent the problem of ∥β∥ → ∞, it can be useful to add a penalty term

to S(β) and then minimize it. Since penalty terms prevent the function to have

local minimum in infinity, then every result of optimization algorithm will definitely

be in bounded interval.

In the following we discussed only L2 and L1 penalties, but any other penalty

could also work. Using a L2 penalty term the loss function that we want to minimize

will be

S2(β) =
n∑
j=1

(
rj −

(
1 +

∑
i ̸=j

Φ

(
(xj − xi)Tβ√

2

)))2

+ λ ∥β∥22 (22)

and for a L1 penalty term loss function will be

S1(β) =
n∑
j=1

(
rj −

(
1 +

∑
i ̸=j

Φ

(
(xj − xi)Tβ√

2

)))2

+ λ ∥β∥1 , (23)

where λ > 0 is a penalty strength. Since, L2 penalty includes squares of entries of

β and L1 only the modules, values of β’s in S2(β) are expected to be smaller than

in S1(β) after minimization. However, L1 penalty tends to do a variable selection,

i.e. trying to make some entries of β zero.

For the minimization of one of the 21, 22 or 23 can be done using any minimiza-

tion algorithm. Let’s name this algorithm Expected Rank Algorithm, which is

described in Algorithm 5.
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Algorithm 5: Expected Rank Algorithm

Require: X, Y , penalty, λ, minimization algorithm.

r ← rank(Y )

S(β)←
∑n

j=1

(
rj −

(
1 +

∑
i ̸=j Φ

(
(xj−xi)T β√

2

)))2
if penalty == no penalty then

β̂ER ← argmin
β

S(β)

else if penalty == L2 then

β̂ER ← argmin
β

S(β) + λ ∥β∥22

else if penalty == L1 then

β̂ER ← argmin
β

S(β) + λ ∥β∥1
end if

Return β̂ER.

Note that in the Algorithm 5 each computation of S(β) (the same for S1(β) and

S2(β)) requires n2 operations. The computation of the ranks is n log n, since it is

essentially a sorting of the elements in vector Y . So, if the minimization algorithm

requires κ evaluations of the objective function, then the overall complexity of the

algorithm will be O(κn2). Experimental results and comparison with other methods

are described in section 5.

Bennett [1968] discusses asymptotic efficiency of β̂ER, but it is only for the case

when f−1
2 is a shift function, i.e. f−1

2 (Y ) = µ+Y for some constant µ. Pettitt [1987]

mentions that it is difficult to obtain any asymptotic property for β̂ER in general

setup.

2.4 Pairwise Rank Likelihood Method

In the previous subsections we have seen that computing the rank likelihood is

computationally hard. We presented results to approximate the rank likelihood

using Monte Carlo methods, but the estimation works in practice only for small

β0. In order to reduce the complexity of the computation, another idea is to only

look at a reduced version of the marginal rank likelihood instead of considering

whole marginal rank likelihood. Following Yu et al. [2021] we consider the pairwise

rank likelihood and maximize it for the linear transformation models and we obtain

consistency and asymptotic normality results.

Overview of their method is the following. Assume that distribution of the noise

variable in the Linear Transformation model (5) is unknown. For i.i.d. sample

{Xi, Yi}ni=1 and corresponding i.i.d. noise {εi}ni=1 let us denote the Cumulative Dis-
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tribution function of εi − εj by F (·) for i ̸= j, which does not depend on neither

i nor j since noise variables are i.i.d. In (6) we have introduced initial conditions

for the model for the sake of identifiability. As we know, initial conditions are not

unique and they can be chosen in a different way (whichever is convenient). Yu

et al. [2021] assume that true parameter β0 has norm 1, i.e. ∥β0∥2 = 1, but allowing

any variance for the noise variables (i.e. σ2 := V ar(εi) is not necessarily 1). Note

that replacing β0 by β0/ ∥β0∥, h by h/ ∥β0∥ and ε by ε/ ∥β0∥ in the model (5) we

will have the initial conditions of Yu et al. [2021] with σ = 1/ ∥β0∥2. Given the

monotonicity of function h we will have

P(Yj > Yi|Xi, Xj) = P(h(Yj) > h(Yi)|Xi, Xj) = P(XT
j β + εj > XT

i β + εi|Xi, Xj)

= P(εi − εj < XT
j β −XT

i β|Xi, Xj) = F
(
(Xj −Xi)

Tβ
)
,

which gives that the following pairwise rank log-likelihood is

ℓ(β, F ) =

(
n

2

)−1∑
i<j

I(Yj > Yi) logP(Yj > Yi|Xi, Xj)

+ I(Yj ≤ Yi) log (1− P(Yj ≤ Yi|Xi, Xj))

=

(
n

2

)−1∑
i<j

I(Yj > Yi) logF
(
(Xj −Xi)

Tβ
)

+ I(Yj ≤ Yi) log
(
1− F

(
(Xj −Xi)

Tβ
))
.

(24)

Using the pairwise rank likelihood the estimators of β0 and F will be

(β̂, F̂ ) = argmax
β∈B,F∈F

ℓ(β, F ),

where B is a compact subspace of Rm and

F = {F (·) : F (x) ∈ [0, 1] and is monotonically increasing}.

For the Algorithm of finding the estimators please refer to the Sections 3.1 (page

5-6) and 8.1 (page 94) of the paper. The idea is to use Pool Adjacent Violation Al-

gorithm (PAVA, Ayer et al. [1955]) and active set methods (de Leeuw et al. [2009])

for the estimation of function F , then use standard optimization (i.e. Nelder–Mead

method, since resulting objective function will not be differentiable) for the param-

eter β.

In our experiments we saw that the nonparametric estimation of the distribution

function F is computationally expensive. Since, in our setup we assume that the

distribution of the noise variable in the Linear Transformation Model (5) is Gaussian,
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which implies that function F is known up to a scaling factor (variance of the noise).

However, in our initial conditions (6) we have incorporated it in the parameter β0

as have been discussed at the beginning of this subsection.

Now let us define the Pairwise Rank Likelihood in our setup and derive its

properties. From the initial conditions (6) we have εi − εj ∼ N (0, 2) since they are

i.i.d. standard normal and so

F (x) = Φ

(
x√
2

)
,

which gives that pairwise rank log-likelihood is the following

ℓprl(β) =

(
n

2

)−1∑
i<j

I(Yj > Yi) log Φ

(
(Xj −Xi)

Tβ√
2

)
+ I(Yj ≤ Yi) log

(
1− Φ

(
(Xj −Xi)

Tβ√
2

))
.

(25)

So, using the above definition of pairwise rank log-likelihood we can define the

PRL estimator which will maximize it, i.e.

β̂PRL := argmax
β

{ℓprl(β)}. (26)

The procedure to obtain a PRL estimator is described in the following Algorithm

6.

Algorithm 6: Pairwise Rank Likelihood Algorithm

Require: X, Y , maximization algorithm.

ℓprl(β)←
(
n
2

)−1∑
i<j I(yj > yi) log Φ

(
(xj−xi)T β√

2

)
+ I(yj ≤

yi) log
(
1− Φ

(
(xj−xi)T β√

2

))
β̂PRL ← argmax

β
ℓprl(β)

Return β̂PRL.

From the optimization perspective in order to obtain the maximum of the func-

tion the optimization function is desired to be concave, so, that its stationary point

will be maximum. It turns out that the pairwise rank log-likelihood function β̂PRL

is indeed concave, which is stated in the following Proposition 2.2.

In order to establish the desired properties, some technical conditions are neces-

sary to hold, which are introduced in the Appendix A.1.

Proposition 2.2. Log pairwise rank likelihood function ℓprl(β) defined in 25 is con-

cave. Moreover, if we assume that the Condition 0 in the Appendix A.1 holds, we

have ℓprl(β) is strictly concave.
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Proof. Please see the proof in Appendix A.4.1.

The next Theorem establishes asymptotic properties of the estimator β̂PRL, in

particular asymptotic normality.

Theorem 2.2. Assume that Conditions 0-2 in Appendix A.1 hold, then

1. β̂PRL − β0 = op(1),

2.
√
n(β̂PRL − β0)

d→ Σ−1N (0,Σψ),

where Σψ is defined in Condition 2 in the Appendix A.1 and Σ := −∇2
βℓprl(β0).

Proof. Please see the proof in Appendix A.4.2.

The above Theorem 2.2 shows that the estimator β̂PRL is consistent and asymp-

totically normal. This theorem is different from the results in [Yu et al., 2021] in

various ways. Firstly, initial conditions are different as we assume no condition on

β0 and they assume it has norm 1. Instead we assume the variance of noise variable

is 1. These conditions should have similar effect on the estimation of β0. Secondly,

they have neither asymptotic normality nor root n consistency of their PRL esti-

mator. Moreover they have conjectured that their estimator is root n consistent.

Theorem 2.2 is a validation of their conjecture in the case when the distribution of

the noise variable in the linear transformation model is known and it is Gaussian.

In order to produce root n consistent estimator they have introduced score base

version of the pairwise rank likelihood and in this case asymptotic normality and

root n consistency hold. Finally, since the assumption of Gaussian noise is quite

strict one, we expect to smaller variance in the estimator.

On top of the theoretical results of β̂PRL, it shows quite good results in practice.

Concavity of the objective function makes the optimization problem much easier

and in practice its maximization converges much faster than the other objective

functions. Moreover, experimental results in Section 5 show that this estimator

outperforms the others, especially when we have β0 is not close to 0.

2.5 Estimation of the Transformation Function

Having estimated β0 in the model (5), we will also need to estimate the transforma-

tion function h in order to obtain the estimate of the noise. We need to estimate the

noise in order to carry out an independence test between the noise and the parents

of the effect in the Post Nonlinear models to obtain the correct causal directions.

As mentioned briefly in the substitution of conditional expectation method (see

the equation (17)), Cuzick [1988] also suggested an estimate for the function h.
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Moreover, in the paper it has been showed that the estimator is asymptotically

Gaussian process. Let us review it and restate the result. Assume that we have

already estimated β0 using some method and name it β̂. For the values in the

sample the estimator of the function h is

ĥFP (yi) := F−1

β̂
(F̂ (h(yi))) for i ∈ [1, n], (27)

where the function F̂ and Fβ̂ are defined in (15) and (16), respectively. Note that

we can calculate the values of {F̂ (h(yi))}ni=1 since F̂ needs only the ranks and the

ranks of {h(yi)}ni=1 is the same as the ranks of {yi}ni=1 by strict monotonicity of h.

Theorem 2.3. (Theorem 2 in [Cuzick, 1988])

If the assumptions (A1)-(A6) in [Cuzick, 1988] are satisfied and we define ĥFP (y) :=

ĥFP (y(i)) for y ∈ [y(i), y(i+1)) (recall that {y(i)}ni=1 is the order statistics of {yi}ni=1),

then

ĥFP (y)→ h(y) as n→∞

for all continuity points y of h. Moreover, if we further assume that h is continuously

differentiable, then
√
n(ĥFP (y)− h(y))→ γ(y)

weakly in Skorohod space D on every bounded set, where γ(·) is a mean zero Gaussian

process. For the covariance function of γ(·) please refer to [Cuzick, 1988].

Since, calculating the function ĥFP only requires to do one step in the Fixed

Point Algorithm 3, this is computationally feasible even for large sample size.

The estimators from [Horowitz, 1996, Chen, 2002, Zhang, 2013] can also be used,

since they also have similar asymptotic properties as ĥFP .

Remark 2.1. Note that the above Theorem 2.3 is stated and proved, where the

estimation β̂ of β0 is carried out using the fixed point method (Algorithm 3). How-

ever, in the proof of the theorem no special representation of the β̂ is used and only

the asymptotic properties is enough. So, using the estimator β̂ which is consistent

and asymptotically normal is enough for the Theorem 2.3. We use Pairwise Rank

Likelihood method to estimate β0.

2.6 Estimation of the Noise

In the previous subsections we discussed how it is possible to estimate the transfor-

mation function h and the parameter β0 in the Linear Transformation Model (5).

Their asymptotic properties have been derived. Here we discuss how to estimate

the noise in this model and obtain its properties.
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Using these methods we can estimate the noise in the following way. Assume we

have n i.i.d. sample {Xj, Yj}nj=1 and estimators ĥ and β̂ for h and β0 respectively.

Define

ε̂j = ĥ(Yj)−XT
j β̂. (28)

Since it is reasonable to assume that ĥ is depends on β̂ (i.e. see the equation (27)

and ĥFP clearly depends on β̂ through the function Fβ̂), having only the asymptotic

distributions of the estimators we cannot obtain the asymptotic distribution of ε̂j as

Zn
d→ Z and Tn

d→ T does not always imply Zn+Tn
d→ Z+T , for random variables

Zn, Tn, Z, T and the counterexample occurs when Zn and Tn are dependent. I have

not been able to obtain the joint distribution of ĥ and β̂. However, as the next

results shows provided a consistency of the estimators we will have consistency of

the errors also.

Lemma 2.2. Let x, y be fixed observed sample from model (5), i.e. h(y) = xTβ0+ϵ.

Assume ĥ and β̂ are consistent estimators of h and β0 respectively based on i.i.d

sample {Xj, Yj}nj=1 from the model (5), that is

β̂
p→ β and ĥ(y)

p→ h(y) as n→∞.

Then, for ε̂ := ĥ(y)− xT β̂ we have

ε̂− ϵ = op(1).

Proof. Using the Continuous Mapping Theorem (Theorem 2.3 in [Vaart, 1998]) and

stochastic o notation, we obtain

ε̂− ϵ = ĥ(y)− h(y)− (xT β̂ − xTβ0) = op(1)− op(1) = op(1).

3 General Transformation Models

In this section we look at the General Transformation Models, which contain as

special case Linear Transformation Models (5). This models can be used to estimate

the causal order of PNL models without Gaussian noise assumption and so the most

general case of PNL models.

Let’s assume

h(Y ) = g(X) + ε, (29)

where X ∈ Rm, Y ∈ R for some m ∈ N, ε is a noise variable independent of X, i.e.

ε ⊥⊥ X, g : Rm → R is some function (can be nonlinear as well) and h : R → R is
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invertible and strictly increasing function. Note that in case g is a linear function

this models becomes the Linear transformation Model.

In this section we do not put any assumption on the noise variable ε, i.e. they can

be Gaussian, exponential, Weibull and etc. The goal is to estimate the functions

h and g based on only observational data. In the Linear Transformation Models

we have estimated the function g (which is linear in that case) then estimated the

function h. However, for the General Transformation Models it is exactly vice versa,

i.e. firstly the function h is estimated then using that information the function g

will be estimated.

For the Linear transformation Models (5) Horowitz [1996] suggested a way to

estimate the transformation function h, based on a root n consistent estimator of

β0. Chiappori et al. [2015] exploited this idea for General Transformation Models

(29) and able to estimate the function h at the first stage (non estimates is known

for g at this point) using kernel smoothing methods. However, if the response Y

is skewed with very long tails the method of Chiappori et al. [2015] does not work

well. Then, Colling and Keilegom [2019] suggested a way to address this problem

by working with the proper transformation of Y instead of Y directly, which we

describe in the following.

In order to identify the model (29) the following normalization condition is im-

posed (to draw parallels with Linear Transformation Models, we put conditions on

the noise variable, such as centered and variance 1):

(N1) h(α1) = a1 and h(α2) = a2 for some α1 < α2 and a1 < a2.

The idea of (N1) normalization is to fix the location and scale of the model.

Without loss of generality it is assumed that α1 = a1 = 0 and α2 = a2 = 1.

Since, in general Y can be skewed then kernel smoothing based on Y can work

poorly. So, the idea of Colling and Keilegom [2019] is to work on the following

transformation of Y . Let

T (Y ) :=
FY (Y )− FY (0)
FY (1)− FY (0)

,

where FY is the cumulative distribution function of Y . Since, T is invertible (i.e.

it is strictly increasing and right continuous) we can define Γ(Y ) = h(T−1(Y )), so

under (N1) we have Γ(0) = h(T−1(0)) = 0, Γ(1) = h(T−1(1)) = 1 and General

Transformation Model (29) becomes

Γ(U) = g(X) + ε, (30)

where U = T (Y ) and Γ(U) = h(Y ). Since, U is defined by shifting and rescaling
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FY (Y ) then it is uniformly distributed and kernel smoothing based on U should

work better than kernel smoothing based on Y .

Now, let us state the identification results and present the estimators. For that

purpose define φ(u, x) = FU |X(u, x) conditional distribution function of U given X.

Then

φ(u, x) = P(U ≤ u|X = x) = P(g(X) + ε ≤ Γ(u)|X = x) = Fε(Γ(u)− g(x)),

where we used the independence between X and ε, and Fε is the cumulative distri-

bution function of ε. Under some assumptions the following derivatives exists. The

derivative of φ(u, x) with respect to u is denoted by φu(u, x) and can be calculated

by

φu(u, x) =
∂

∂u
φ(u, x) = Γ′(u)fε(Γ(u)− g(x)),

where fε is the probability density function of ε. In the same way the derivative of

φ(u, x) with respect to xρ (for all ρ ∈ [1,m]) will be

φρ(u, x) =
∂

∂u
φ(u, x) = − ∂

∂xρ
g(x) · fε(Γ(u)− g(x)).

Assuming φρ(u, x) is not zero, the division of the above two equations will give

Γ′(u) = − ∂

∂xρ
g(x) · φu(u, x)

φρ(u, x)
, (31)

which is the basis for proving the following identification result.

Theorem 3.1. (Theorem 3.1 in [Colling and Keilegom, 2019])

Assume (A1)-(A4) in [Colling and Keilegom, 2019] hold. Then for any ρ ∈ [1,m]

such that Aρ (defined in [Colling and Keilegom, 2019]) is not empty, Γ can be

identified under (N1) in the following way

Γ(u) = λρ(u, x) =
Sρ(u, x)

Sρ(1, x)
,

where sρ(u, x) =
φu(u,x)
φρ(u,x)

and Sρ(u, x) =
∫ u
0
sρ(w, x) dw . Moreover, λρ(u, x) does not

depend neither ρ nor x.

The above shows the identifiability of the function Γ and now let us define its

estimators. Let {(Xj, Yj)}nj=1 be i.i.d. sample from the General Transformation

Model (29) and define Ui = T (Yi).

The function φ(u, x) can also be written as

φ(u, x) =
p(u, x)

fX(x)
,
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where

p(u, x) =

∫ u

−∞
fU,X(w, x) dw , fX(x) =

∫ +∞

−∞
fU,X(w, x) dw

and fU,X(u, x) is the joint probability density function of (U,X). For a univarite

kernel K (in the simulations Epanechinkov kernel has been chosen, which also sat-

isfies desired conditions) define K(u) =
∫ u
−∞K(w) dw and K(x) =

∏m
j=1K(x(j)) be

product kernel. For bandwidths hx and hu we can define Khx(x) := K(x/hx)/h
m
x

and Khu(u) = K(u/hu)/hu. Since, we observe Yj and not Uj we have to estimate

Uj and natural way to do is to replace cumulative distribution function of Yj by its

empirical distribution function, that is

Ûj = T̂ (Yj) =
F̂Y (Yj)− F̂Y (0)
F̂Y (1)− F̂Y (0)

for j ∈ [1, n],

where F̂Y (y) =
1
n

∑n
j=1 I(Yj ≤ y). Then kernel estimator of φ(u, x) can be defined

as

φ̂(u, x) =
p̂(u, x)

f̂Xx
,

where

p̂(u, x) :=
1

n

n∑
j=1

Khu(u− Ûj) ·Khx(Xi − x) and f̂X(x) =
1

n

n∑
j=1

Khx(Xi − x).

Now based on the above we can estimate the ingredients of λρ defined in the Theorem

3.1. Since the Theorem hold for every value of ρ we can assume that without loss

of generality ρ = 1. We have the following

φu(u, x) =
∂

∂u

p(u, x)

fX(x)
=
pu(u, x)

fX(x)
,

and

φ1(u, x) =
∂

∂x1

p(u, x)

fX(x)
=
p1(u, x)fX(x)− p(u, x)fX,1(x)

f 2
X(x)

,

where pu(u, x) =
∂
∂u
p(u, x), p1(u, x) =

∂
∂x1
p(u, x) and fX,1(x) =

∂
∂x1
fX(x). Now their

corresponding kernel estimators will be

p̂u(u, x) =
∂

∂u
p̂(u, x), p̂1(u, x) =

∂

∂x1
p̂(u, x) and f̂X,1(x) =

∂

∂x1
f̂X(x)

and

φ̂u(u, x) ==
p̂u(u, x)

f̂X(x)
, φ̂1(u, x) =

p̂1(u, x)f̂X(x)− p̂(u, x)f̂X,1(x)
f̂ 2
X(x)

.

Putting everything together, we obtain

λ̂1(u, x) =
Ŝ1(u, x)

Ŝ1(1, x)
, (32)
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where

Ŝ1(u, x) =

∫ u

0

φ̂u(w, x)

φ̂1(w, x)
dw .

Since in the equation (32) λ1 depends on x, while the actual λ1 does not depend

on x, we can integrate it overx to have more reliable estimator. For a weighting

function v(x) Theorem 3.1 gives Γ(u) = λ1(u, x) and we have

Γ(u) = argmin
q

∫
v(x)ℓ(λ1(u, x)− q) dx

where ℓ is a loss function (i.e. ℓ(t) = t2 or ℓ(t) = |t|). This is true since integrand is

always non-negative and is zero when λ1(u, x)− q = 0, which gives Γ(u) = λ1(u, x).

Then, for ℓ(t) = t2 we have

Γ̂LS(u) =

∫
v(x)λ̂1(u, x) dx (33)

and for ℓ(t) = |t| we have

Γ̂LAD(u) = argmin
q

∫
v(x)|λ1(u, x)− q| dx . (34)

In order to facilitate the theoretical analysis of Γ̂LAD the authors suggested smoothed

version of it, namely Γ̂LAD,b. For more detailed definitions please refer to Colling

and Keilegom [2019].

Both of the above estimators are asymptotically Gaussian as the following The-

orem states.

Theorem 3.2. (Corollary 5.1 in [Colling and Keilegom, 2019])

Assume (A1)-(A10) in [Colling and Keilegom, 2019] hold. Then the processes
√
n(Γ̂LS(T̂ (y))− h(y)) and

√
n(Γ̂LAD,b(T̂ (y))− h(y)) converge to centered Gaussian

process Ñ (y).

For the detailed definitions and proofs please refer to Colling and Keilegom

[2019].

Note that here we obtained estimate for h without estimating the function g,

which is the exact opposite of what we have done in the Linear Transformation

Models. Now we can replace function h by its estimate Γ̂ ◦ T̂ (where Γ̂ is either Γ̂LS

or Γ̂LAD,b) in the General Transformation Model (29) and obtain

Γ̂LS(T̂ (Y )) = g(X) + ε.

Since, in the above response Γ̂LS(T̂ (Y )) is already known we can estimate g using

any method for the kernel regression. For instance, Nadaraya–Watson method gives

ĝ(x) =

∑n
j=1Khx(x−Xj) · Γ̂LS(T̂ (Yj))∑n

j=1Khx(x−Xj)
. (35)
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Thus, the equations (33), (34) and (35) give a complete non-parametric estima-

tion of the model (29).

4 Post-Nonlinear Gaussian Causal Models

Using the results from the previous section we know how to estimate the parameters

in the model Y = h−1(g(X)+ε). Since the post nonlinear model is exactly the same

form in the case when variables in X are the causes of Y , we can use these results

to obtain a method which will discover the underlying true causal directions. For

causal order estimation, the idea is to identify a sink node at each step and remove

it from the causal graph and repeat the same procedure until there will be no node

in the graph.

For the case ofm nodesX(1), . . . , X(m) in the causal graph, we have to understand

which one is a sink node. For that purpose we can fit the models for each node as a

sink, then report the one which fitted the best. In order to understand what means

best precisely we can just check the conditions of the model, i.e. noise is independent

of the parents of the effect. For instance, if we fit the model for X(m) as a sink node,

then we haveX(m) = h−1
m (gm(X

(1), . . . , X(m−1))+εm). After estimating the functions

hm and gm we obtain the estimate of the noise and we can test the independence

between the noise and X(1), . . . , X(m−1). Note that in the case of X(m) is actually a

sink node then there is a model X(m) = h−1
m (gm(X

(1), . . . , X(m−1)) + εm), where the

noise is independent of X(1), . . . , X(m−1). So, for the sink node we expect that the

estimated noise is independent from the parents of the sink.

There are various methods to test independence based on observational data.

For instance, different rank correlation tests, including ρ of Spearman [1904], τ of

Kendall [1938] and Chatterjee’s rank correlation Shi et al. [2020]. Berrett et al. [2021]

use permutation U-statistics to test independence. Gretton et al. [2005] suggested

Hilbert-Schmidt Independence Criterion (HSIC) which has found many applications.

We mainly use the HSIC (we will review it later in this section) criterion for

independence since it characterizes independence completely, i.e. HSIC is zero if

and only if the random vectors are independent.

The remaining of the section is organized as follows. Firstly, we briefly overview

the Hilbert-Schmidt Independence Criterion and existing PNL methods. Then, con-

sider the bivariate PNLG models and develop a method to estimate causal direction.

Afterwards, we extend the bivariate method for multivariate setting and derive their

properties. At the end discuss the PNL (without Gaussian noise assumption) models

and show how our method can be extended to this case.
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4.1 HSIC

Here we review the Hilbert-Schmidt Independence Criterion (HSIC) from [Gretton

et al., 2005] paper. Assume that X and Y are random vectors and they have a

joint distribution PX,Y . We would like to test the independence of X and Y based

on the i.i.d. sample S := {(X1, Y1), . . . , (Xn, Yn))} from the distribution PX,Y . Let

k(·, ·) and l(·, ·) be kernels defined on the corresponding spaces of X and Y . Then,

empirical HSIC is defined as follows

HSIC(S) := (n− 1)−2tr(KHLH), (36)

where tr is a trace of a matrix, H,K,L ∈ Rn×n, Kij := k(Xi, Xj), Lij := l(Yi, Yj)

and Hij := I(i = j)−n−1 for i, j ∈ [1, n]. Moreover, population version of the HSIC

(not empirical one) is defined as HSIC(PX,Y ) for the same kernels k(·, ·) and l(·, ·)
and HSIC(PX,Y ) = 0 if and only if X and Y are independent. For more exact

definition please refer to the paper.

Now let us state the properties of empirical HSIC from [Gretton et al., 2005].

The following theorem gives the bias term of the HSIC.

Theorem 4.1. (Theorem 1 in [Gretton et al., 2005])

The following equality holds

HSIC(PX,Y ) = ES[HSIC(S)] +O(n−1),

where ES denotes the expectation taken over n independent copies of X, Y from the

distribution PX,Y .

The above theorem shows that bias of empirical HSIC converges to the actual

HSIC with the rate O(n−1). The next result gives a quantitative bound on empirical

HSIC.

Theorem 4.2. (Theorem 3 in [Gretton et al., 2005])

Assume that kernels k(·, ·) and l(·, ·) are bounded almost surely by 1 and are non-

negative. Then for n > 1 and arbitrary δ > 0, with probability at least 1− δ, for all

PX,Y , the following holds

|HSIC(PX,Y )−HSIC(S)| ≤
√

log(6/δ)

α2n
+
C

n
,

where α2 > 0.24 and C are constants.

We will not review how exactly carry out a independence test using HSIC, be-

cause only the value of the Independence criterion HSIC is sufficient for us to un-

derstand which is the best fitted model.
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4.2 Existing PNL methods

Firstly, let us review existing bivariate PNL estimation methods then move to the

multivariate case.

As described in Zhang and Hyvärinen [2009], the authors use the multi-layer

perceptrons (MLP’s) to represent the functions f1 and f−1
2 in the bivariate PNL

model

X(2) = f2(f1(X
(1)) + ε2).

If f̂1 and f̂−1
2 are these representations, then noise can be expressed as

ε̂2 = f̂−1
2 (X(2))− f̂1(X(1)).

Since, ε2 is independent of X(1) they learn f̂1 and f̂−1
2 by minimizing the mutual

information between ε̂2 and X(1), i.e. I(X(1), ε̂2). Then the direction X(1) → X(2)

is supported if the resulting noise is independent of the cause according to some

independence test.

Note that if f̂1 and f̂−1
2 are constants then their difference is again constant

and it will be independent of X(1), which gives their mutual information is zero.

So, for every model MLP’s can learn constant functions by minimizing the mutual

information.

To deal with this problem Uemura and Shimizu [2020] suggested to force the

function f̂2 be invertible and instead of the mutual information use HSIC. In order

to make f̂2 invertible the authors use auto-encoder structure in the loss in the follow-

ing way. The functions f1, f2, f
−1
2 are represented by Neural Networks f̂1, f̂2, f̂

−1
2 ,

respectively. Then again noise is estimated by ε̂2 = f̂−1
2 (X(2)) − f̂1(X

(1)) and in

order to force f̂−1
2 be the inverse of f̂2, the reconstraction error of X(2) is provided

by the euclidean norm of X(2) − f̂2(f̂
−1
2 (X(2))). So, the final loss will be convex

combination of the two losses, i.e.

L = λHSIC(X(1), ε̂2) + (1− λ)
∥∥∥X(2) − f̂2(f̂−1

2 (X(2)))
∥∥∥
2
,

where λ ∈ (0, 1). Then the both directions fitted, i.e. X(1) → X(2) and X(2) → X(1),

and the direction which produced smaller loss have been chosen.

For the multivariate PNL models Uemura et al. [2022] extend the method of

Uemura and Shimizu [2020] to estimate the true underlying causal graph of PNL

models. The idea of the method is to identify the sink node at each step by using

the same method as above for the bivariate case. After estimating the causal order

the authors identify the nodes in the set of possible parents that are important to

make the estimated noise independent of them and thus producing the estimation

of the causal graph.
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Note that in all the above mentioned methods the functions f1 and f2 are learned

by minimizing the independence between noise and potential causes. Then testing

the independence between noise and the causes. This can be problematic if we do

not have infinite data. For instance, for a fixed sample size n models are powerful

enough that can make the estimated noise independent of the causes then we end

up supporting all the possible causal directions. However, if we are bale to estimate

these function using only the structure of the model it can produce better results.

4.3 Bivariate Post-Nonlinear Gaussian Causal Models

In this section we are looking at the bivariate Gaussian causal model

X(2) = f2(f1(X
(1)) + ε2), (37)

where ε2 ∼ N (0, 1) is a noise variable independent of X(1) and f2 is invertible.

Firstly, let us understand which are the identifiable cases in bivariate post-

nonlinear causal models. Assuming the model is not identifiable, i.e. there is a

backward direction

X(1) = g2(g1(X
(2)) + ε1), ε1 ⊥⊥ X(2), (38)

For some functions g2 and g1, where g2 is invertible. Zhang and Hyvärinen [2009]

show that under some conditions(which are satisfied in Gaussian PNL setting) all

non-identifiable cases are listed in Table 1. For the distributions listed in the table

please look at the paper.

Table 1 gives that in the Gaussian noise setting, only non-identifiable model is

the first line of the the table, which shows that if bivariate pnl-Gaussian model is

identifiable, then both h and h1 functions must be linear. Since, these functions

can’t be linear if, for instance, function f1 is not injective, of course there are some

subtle points which should be taking into account. For strict examples, Corollaries

4.1 and 4.2 give an examples of non-identifiable and identifiable bivariate models,

respectively, which are also used in the experiments.

Corollary 4.1. The following post-nonlinear causal model is not identifiable

X(2) = (βX(1) + ε2)
1/3, (39)

where β ∈ R, ε2 ∼ N (0, 1), X(1) ∼ N (0, 1) and ε2 ⊥⊥ X(1).

Proof. Please see the proof in Appendix A.5.1.
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ε2 T1 := g−1
2 (X(1)) h := f1 ◦ g2 Remark (h1 := g1◦f2)

Gaussian Gaussian linear h1 is linear

log-mix-lin-exp log-mix-lin-exp linear h
′
1 strictly monotonic,

h
′
1 → 0, as z2 → +∞

or as z2 → −∞
log-mix-lin-exp one-sided

asymptotically

exponential (but

not log-mix-lin-

exp)

h is strictly

monotonic and

h
′ → 0, as

t1 → +∞ or as

t1 → −∞

-

log-mix-lin-exp generalized mix-

ture of two expo-

nentials

same as above -

generalized mix-

ture of two expo-

nentials

two-sided

asymptotically

exponential

same as above -

Table 1: Non identifiable bivariate PNL causal models

Corollary 4.2. The following post-nonlinear causal model is identifiable

X(2) = f2(β(X
(1))2 + ε2), (40)

where β ∈ R, ε2 ∼ N (0, 1), X(1) ∼ N (0, 1), ε2 ⊥⊥ X(1) and function f2 is invertible.

In particular the model X(2) = (βX(1) + ε2)
1/3 is identifiable.

Proof. Please see the proof in Appendix A.5.1.

Now having an impression in what cases the model is non-identifiable and having

seen examples from both cases, let us develop a method to estimate the underlying

true causal direction assuming the model is identifiable. This means, the model

(37) and backward direction is not possible, i.e. (38) does not hold. Thus, if we

fit the transformation model for both directions, i.e. f−1
2 (X(2)) = f1(X

(1)) + ε2 and

g−1
2 (X(1)) = g1(X

(2)) + ε1 and test the independence of noise and the cause, only in

correct direction it will be satisfied. For the Independence we can just take the HSIC

value and compare for both fitted cases. Intuitively, the direction which produces

smaller HSIC value should be a true causal direction. The method is described in

the following Algorithm 7.
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Algorithm 7: Bivariate PNL Estimation Algorithm

Require: {(X(1)
1 , X

(2)
1 ), . . . (X

(1)
n , X

(2)
n )}, noise estimation algorithm.

(u1, . . . , un)← estimated noise for the direction X(1) → X(2)

hsic1 ← HSIC({X(1)
j , uj}nj=1)

(w1, . . . , wn)← estimated noise for the direction X(2) → X(1)

hsic2 ← HSIC({X(2)
j , wj}nj=1)

if hsic1 < hsic2 then

order ← (X(1), X(2))

else

order ← (X(2), X(1))

end

Return order.

Since, above described method is a specific case of multivariate PNL method, dis-

cussed in the next subsection, we present the theoretical results only for multivariate

case.

4.4 Multivariate Post-Nonlinear Gaussian Causal Models

Here we look at the multivariate PNLG (Definition 1.3) causal models, give a method

to estimate the causal order of them and study the asymptotic properties of this

method.

For PNLG models we have

X(j) = fj,2(fj,1(PAj) + εj) for ∀j ∈ [1,m],

where PAj are the parents of X(j) in the causal graph G0 and εj ∼ N (0, 1) with

εj ⊥⊥ PAj.

The idea of estimating the causal order of the PNLG model is to identify a sink

node in the causal graph in the same way as in the bivariate case and then remove it

from the graph. Note that iteration of identifying a sink node and removing it from

the graph gives causal order of the model. Moreover, we can obtain a sink node

exactly in the same way as we did in the bivariate case using the noise estimation

algorithm and then testing if the noise is independent of the causes or not.

Assume we have i.i.d. sample {Xj := (X
(1)
j , . . . , X

(m)
j )}nj=1 from the PNLG model

with sample size n and number of nodes in the graph G0 is m. Moreover, assume

that we also have T (T is fixed) i.i.d. sample {Vj := (V
(1)
j , . . . , V

(m)
j )}Tj=1 from the

same model with observed values {vj := (v
(1)
j , . . . , v

(m)
j )}Tj=1, which are independent

of {Xj}nj=1.
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Remark 4.1. The values {Vj}Tj=1 can be seen as the test set and the values {Xj}nj=1

as training set. This is somewhat technical separation in order to obtain the con-

sistency of the causal order estimation with high probability with precise arguments.

However, I think consistency holds without this separation, when errors are evalu-

ated directly on the same dataset and then tested Independence with potential causes.

This is a interesting topic of future work. In the experiments the values in the test

and train set have been chosen the same.

Let π be a permutation of {1, 2, . . . ,m} and for a random vector

Xj = (X
(1)
j , . . . , X

(m)
j )

define

Xπ,j := (X
π(1)
j , . . . , X

π(m)
j ), i.e. X

(k)
π,j = X

π(k)
j .

We can define a fully connected DAG Gπ based on a permutation π in the following

way. There is an edge between π(i) to π(k) in DAG Gπ, i.e. π(i) → π(k) if and

only if k > i. For instance, π(m) will be a sink node in Gπ. Note that different

permutations correspond different fully connected DAGs and each fully connected

DAG gives a permutation, which means correspondence is one to one. Similar to

Bühlmann et al. [2014] let us define the set of true permutations as

Π0 := {π0 : Gπ0

is a super-graph of true causal graph G0}.

All the permutations in Π0 correspond to the order of G0. If the true DAG G0 is

not fully connected there can be more than one true permutations, i.e. Π0 has more

than one element. For example, for the DAG depicted in Figure 9 true permutations

are {(1, 2, 3, 4), (1, 3, 2, 4)}, which contains two elements.

Having a method to estimate a sink node we can estimate a causal order π̂ in

the following way. Let

π̂(m) = sink node that produces a sink node estimation method.

Then we remove π̂(m) from the set [1,m] and estimate π̂(m− 1), i.e. using the sink

estimation method we estimate π̂(m − 1) in the set [1,m] \ π̂(m). Continuing this

process we obtain

π̂ = (π̂(1), . . . , π̂(m)). (41)

The following Proposition states that if we can estimate a sink node consistently

then we can also identify a causal order consistently.
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Proposition 4.1. Assume sink node estimation method is consistent with high prob-

ability, i.e. for arbitrary small δ > 0 we have

P(π̂(m) is a sink node ) ≥ 1− δ/m as n→∞.

Then π̂ defined in (41) is a consistent estimator with high probability of true causal

order, i.e.

P(π̂ ∈ Π0) ≥ 1− δ as n→∞.

Proof. For a set A ⊂ [1,m] define a subgraph GA of a DAG G, by removing all the

nodes that are not in A, i.e. not in [1,m] \ A and their adjacent edges. Let us

estimate the probability that estimated order is in the true set of permutations in

the following way

P(π̂ ∈ Π0) = P(π̂(j) is a sink node in G0[1,m]\{π̂(j+1),...,π̂(m)} for ∀j ∈ [1,m])

= 1− P(∃j ∈ [1,m] : π̂(j) is not a sink node in G0[1,m]\{π̂(j+1),...,π̂(m)})

≥ 1−
m∑
j=1

P(π̂(j) is not a sink node in G0[1,m]\{π̂(j+1),...,π̂(m)})

≥ 1−
m∑
j=1

δ/m = 1− δ, as n→∞,

where the first equality follows from the fact that if π̂(j) is not a sink node in a

subgraph G0[1,m]\{π̂(j+1),...,π̂(m)} for some j implies there is a directed path from π̂(i)

to π̂(j) for some i < k, which is a contradiction of the definition of Π0. The second

equality is just the complement rule of probability. The first inequality is the union

bound of probability and the last one is just an application of the assumption of

Proposition. This completes the proof of the Proposition.

The above Proposition shows that provided consistent sink estimation method

we can estimate the causal order consistently as well. Now let us understand how

can we obtain such a method.

For each k ∈ [1,m] let us assume that

{(X(1)
j , . . . , X

(k−1)
j , X

(k+1)
j , . . . , X

(m)
j ), X

(k)
j }nj=1

are i.i.d. samples from the Linear Transformation Model (5) with standard normal

noise. Define

X
(−k)
j := (X

(1)
j , . . . , X

(k−1)
j , X

(k+1)
j , . . . , X

(m)
j ).

Using the Pairwise Rank Likelihood (26) and Fixed Point Transformation function

estimation (27) we obtain consistent estimators ĥ and β̂ of h and β0 respectively.
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Now using ĥ and β̂ we can estimate the noise for the other T observations and

test whether or not noise is independent of potential causes in the following way.

From the noise estimation method from (28) we obtain

ε̂
(k)
j = ĥ(v

(k)
j )− (v

(−k)
j )T β̂ for j ∈ [1, T ]. (42)

Let us define

tk := HSIC({v(−k)j , ε̂
(k)
j }Tj=1). (43)

Now, let us define the estimator of a sink node in the following way

π̂(m) := argmin
k

{tk} . (44)

Note that if Vj happens to be a sink node in the PNLG model where the functions

fj,1 are linear and if we estimated the parameters perfectly, the HSIC value should

be close to zero as the noise is independent of nodes V
(−k)
j . The next result shows

that under some conditions π̂(m) is a consistent sink node estimator.

In the following we state some assumptions and discuss them. We need these

assumptions to make the arguments of the consistency results precise.

(A1) Assume X := (X(1), . . . , X(m)) be a random vector distributed according to

the PNLG model. For each k ∈ [1,m] and A ⊂ [1,m] \ {k} such that X(A) contains

at least one child of X(k) define

N := h(X(k))− (X(A))Tβ,

for arbitrary strictly increasing function h and arbitrary vector β. Then, we assume

HSIC(PN,X(A)

) > ξ,

for some constant ξ > 0, which does not depend k, A, h or β.

The above assumption (A1) is necessary to make the PNLG model identifiable

(i.e. there exists unique causal graph corresponding to the distribution). Each time

sink node can be identified from the distribution since otherwise noise would not

be independent of the causes. So, there will be unique causal graph corresponding

to the distribution. However, this condition might be quite strict as it can happen

that sink node cannot be identified but if we continue further we see that at some

point we come across to a contradiction. This situations cannot be handled with our

method since if at some point we estimate a sink node wrongly we cannot change it

and the causal order will be wrong. Thus, this condition is somehow necessary for

our method.
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(A2) Assume conditions of Theorems 2.2 and 2.3 are satisfied.

Assumption (A2) is necessary to obtain the asymptotic results of the Linear

Transformation Models and is discussed in Appendix A.1.

(A3) Assume that functions fk,1 are linear in the PNLG model, i.e. fk,1(PAk) =

PAT
k βk for some vector βk, functions fk,2 are strictly increasing.

Assumption (A3) is a particular case of PNLG models, in order to make analysis

more easy and develop practical algorithms. Generalization ideas can be found in

the next section, where we see that not only we can drop the assumption of the

Gaussianity of the noise but also the assumption (A3). However, it can payoff with

the computation cost of the practical algorithms.

The following result states the consistency of a sink node estimation method

under the above assumptions.

Proposition 4.2. Assume (A1)− (A3) hold and fix arbitrary small δ > 0. Then,

we have π̂(m) defined in (44) estimates a sink node consistently with high probability,

that is

P(π̂(m) is a sink node) ≥ 1− δ/m as n→∞,

provided √
log(6m/δ)

α2T
+
C

T
<
ξ

2
,

where α, C are defined in Theorem 4.2 and ξ is defined in (A1).

Proof. Please see the proof in Appendix A.5.2.

Now, let us state and prove the main Theorem of this Section, which is a con-

sistency of the causal order estimation. Note that previous two proposition should

give the desired consistency, as we can see it in the proof.

Theorem 4.3. Assume that the conditions of Proposition 4.2 are satisfied. Then,

π̂ defined in (41) with the sink node estimation from (44) is a consistent estimation

of true causal order with high probability, that is, for arbitrary small δ > 0 we have

P(π̂ ∈ Π0) ≥ 1− δ as n→∞.

Proof. From Proposition 4.2 we have P(π̂(m) is a sink node) ≥ 1− δ/m as n→∞.

So, the assumption of Proposition 4.1 is satisfied, which gives that

P(π̂ ∈ Π0) ≥ 1− δ as n→∞.

The sink node identification procedure is described in the Algorithm 8.
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Algorithm 8: Multivariate PNL Sink Estimation Algorithm

Require: {X1 := (X
(1)
1 , X

(2)
1 , . . . , X

(m)
1 ), . . . Xn := (X

(1)
n , X

(2)
n , . . . , X

(m)
n )},

noise estimation algorithm.

hsic = []

for j = [1,m] do

(u1, . . . , un)← estimated noise for sink X(j), i.e. Y := X(j) and

X := (X(1), . . . , X(j−1), X(j+1), . . . , X(n)) in the LTM (2)

hsicj ← HSIC({(X(1)
i , . . . , X

(j−1)
i , X

(j+1)
i , . . . , X

(n)
i ), ui}ni=1)

hsic← [hsic, hsicj]
end for

sink ← argmin
j

{hsic}

Return sink.

Using the above sink estimation algorithm we can estimate the causal order in

the following Algorithm 9.

Algorithm 9: Multivariate PNL Order Estimation Algorithm

Require: {X1 := (X
(1)
1 , X

(2)
1 , . . . , X

(m)
1 ), . . . Xn := (X

(1)
n , X

(2)
n , . . . , X

(m)
n )},

noise estimation algorithm.

order = []

remained← [1,m]

for j = [1,m] do
sink ← get sink node using Algorithm 8 for the nodes Xi for

i ∈ remained
order ← [sink, order]

remove sink from remained
end for

Return order.

4.5 Post-Nonlinear Causal Models

In this subsection we consider generalizations of the previous subsection, namely

how can we drop some of the assumptions that we made before. The most general

form of Post-Nonlinear causal models (Definition 1.2) is the following structural

equations

X(j) = fj,2(fj,1(PAj) + εj) for ∀j ∈ [1,m],

where PAj are the parents of X(j) in the causal graph G0 and εj ⊥⊥ PAj.
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Now consider the following cases, where each of them is a generalization of PNLG

models that we discussed in the previous subsection and the last one is the PNL

models without any restriction (only the technical assumptions for theoretical re-

sults)

1. Assume that functions fj,1 are linear in the PNLG model, i.e. fj,1(PAk) =

PAT
j βj for some vector βk, functions fj,2 are strictly increasing.

Note that this is the assumption (A3) in the previous subsection and we do

not put any restriction on the noise variables. So, the structural equations for

the PNL model will become

X(j) = fj,2(PA
T
j βj + εj) for ∀j ∈ [1,m].

Note that defining hj := f−1
j,2 we obtain

hj(X
(j)) = PAT

j βj + εj for ∀j ∈ [1,m],

which is exactly the Linear Transformation Models (5), that is

h(Y ) = XTβ + ε,

where ε is independent of X. So, using this model we can identify a sink node

each time and remove it from the graph until we obtain the causal order.

In the previous sections we developed the case when we have Gaussian noise,

but as mentioned similar results also hold without assuming Gaussianity. So,

we can take any estimator from the [Han, 1987, Cavanagh and Sherman, 1998,

Abrevaya, 1999a,b, 2003, Yu et al., 2021] list and do the exact same analysis

as we did for the Gaussian noise case. For instance, we can take Han [1987]

Maximum Rank Correlation (MRC) estimator which is consistent and asymp-

totically normal [Cavanagh and Sherman, 1998]. To obtain MRC estimator

let us define the following objective function

ℓmrc(β) =

(
n

2

)−1∑
i<j

I(Yj > Yi)I((Xj −Xi)
Tβ > 0)

+ I(Yj < Yi)I((Xj −Xi)
Tβ < 0),

(45)

and MRC estimator of β will be

β̂ = argmax
β
{ℓmrc(β)}. (46)

Having a estimator of β like in the previous sections we can use it to obtain

a estimator ĥ of h, i.e. [Horowitz, 1996, Chen, 2002, Zhang, 2013]. Then the
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rest is the same as the PNLG models as we only need asymptotic results for

the ĥ and β̂ which also hold in this case.

One disadvantage of the objective function in (45) is its discontinuity and

its maximization is computationally expensive. To tackle this problem, the

estimator based on the objective function suggested by Zhang [2013] can be

used, which is continuous.

2. Assume PNL models (Definition 1.2) without any further assumptions

Here the idea is to use the General Transformation Models 3 to obtain the

estimate of the noise and proceed in the same way as the PNLG case. Since,

structural equations have the following form

X(j) = fj,2(fj,1(PAj) + εj) for ∀j ∈ [1,m],

as in the previous case we can look at the following transformation model

h(Y ) = g(X) + ε,

which is exactly the General Transformation Models (29). Using the method

described in section 3 we can obtain estimators ĥ and ĝ of h and g correspond-

ingly. Note that these estimators are again asymptotically normal and so the

same analysis for the consistency of the causal order estimation holds in this

case also. One of the drawbacks in this method is that even for the bivariate

case and sample size 100 the method takes more than 7 hours to obtain the

causal order.

The above two cases have been discussed very shortly, but they are interesting

topic of future research. In particular, reducing the computational cost of the second

case can produce reliable algorithm to estimate the casual directions in the most

general PNL models.

5 Experimental Results

This section is an overview of the experimental results for the algorithms described

in the previous sections and their comparison. Implantation of the Algorithms

have been done in R and can be found in the following GitHub https://github.

com/grigor97/pnl_gaussian page. For the implementations (Python/PyTorch)

of the papers [Uemura and Shimizu, 2020, Uemura et al., 2022] please refer to

https://github.com/grigor97/ab_pnl.
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In the next first subsection reviews the results of the Linear Transformation

Models and compares discussed algorithms with each other. Then the second sub-

section is the review of the PNL results with Gaussian noise (both bivariate and

multivariate cases).

5.1 Results of Linear Transformation Models

Experiments for the Linear Transformation Models (5) have been carried out mainly

for a sample size 1000 (for 500 and 3000 sample sizes similar results have been ob-

tained) for one dimensional β0 and each experiment (fixed β0 and sample size) have

been repeated 100 times. Since the model in (5) is symmetric for β0 (i.e. having −β0
instead of β0 in the equation h(Y ) = XTβ0+ε we can just negate the values in X to

have h(Y ) = (−X)T (−β0)+ε), we only considered non-negative β0. The actual val-

ues of β0 in the experiments are β0 ∈ [0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 10, 30, 50, 70, 100, 1000].

Values of X have been simulated from standard normal distribution, i.e. X ∼
N (0, 1) and function h cubic function, i.e. h(Y ) = (Y − c)3 for some constant c.

The noise ε as described in the algorithms is standard normal distributed.

In the following are the results of the Algorithms described in the Section 2.

The first we introduce the numerical comparison of described algorithms and their

corresponding estimators then make visualization of the results.

Tables 2 3 and 4 are the Relative Bias (RB), Variance (Var) and Mean Squared

Error (MSE) numerical results on the simulated datasets, respectively. Relative Bias

of an estimator

hatβ is computed in the following way

RBβ̂ :=
β̂ − β0
β0

,

where β0 is the true parameter and it is not zero. Since we have repeated each

experiment 100 times and every time we obtain some estimate, we compute the

mean of the all estimates and then use the above formula to obtain Relative Bias.

Variance and the Mean Squared Error are the standard estimates (for the variance

we have n in the denominator instead of n − 1). Rows in the Tables show the

different values of true parameter β0 and the columns are for different estimators.

The smallest values for each value of β0 is boldface in the Tables. For the Expected

Rank Algorithm only the L2 penalty version is reported in here as the others not

even comparable, which we can see in plots discussed next.

Comparing the different estimators we see that Pairwise Rank Likelihood estima-

tor β̂PRL is the best among all. Its Relative Bias is almost all the cases smaller than

the others. For the values it is not the smallest we can see that it shows comparable
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Relative Bias (RB)

β0 \ Est. β̂MC β̂SPF β̂ER (L2, λ = 1) β̂PRL

0.01 0.07463830 -0.38476481 0.153509414 -0.1884277362

0.1 0.04116651 -0.11114560 -0.021546194 0.0016160692

0.3 -0.01656634 -0.08849482 0.006836647 -0.0058695061

0.5 -0.04880277 -0.1048635 0.000776208 -0.0070462067

0.7 -0.11633692 -0.11139786 -0.005621234 -0.0014367806

0.9 -0.20450478 -0.08167034 -0.005647065 0.0004179769

1 -0.24206052 -0.11180298 -0.000550831 -0.0008016458

10 -0.89321580 -0.70401173 0.026115395 -0.0031277489

30 -0.96424925 -0.89717817 -0.211420737 -0.0012698640

50 -0.97855179 -0.93869024 -0.411303826 -0.0011620624

70 -0.98468334 -0.95586403 -0.542852247 0.0015114792

100 -0.98927378 -0.96908991 -0.662049306 0.0019802367

1000 -0.99892702 -0.99692616 -0.963831477 -0.0023829947

Table 2: Relative Bias results for algorithms, n = 1000 and each experiment repeated

100 times.

results. For the case of variance we see that only for the first two smallest β0 PRL

estimator produces smallest variance and for large values it is significantly larger

than the others. The reason for this is that the other estimators tend to estimate β0

very small and so have smaller variance. However, if we compare the results of the

MSE’s PRL estimator outperforms all the others. Note that β̂MC estimator have

smaller variance and in some cases even smaller MSE than β̂PRL, but it cannot esti-

mate β0 properly for large values. Moreover, β̂MC produces smaller MSE (which is

again comparable to the MSE of β̂PRL) only for smaller values of β0. For the case of

Expected Rank Algorithm with L2 penalty we see that it also has smaller variance

and smaller MSE for one value of β0. The reason for smaller MSE is expected for

us since we penalize the estimator with L2 norm and also it might perform well for

smaller values of β0. All in all, β̂PRL estimator is the best of all especially for large

values of β0 and the others are not even comapreable in this case.

In order to have visual understanding how the different algorithms performed

in different occasions let us visualize them in the following. The following plots

represent the boxplots of the estimated parameter β0 for a given algorithm and the

red dots are the true values of β0 which are also provided in the x axis.

Figure 1 shows the results of the Monte Carlo Algorithm 1 for M = 1000 and

maximum iterations 100.
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Variance (Var)

β0 \ Est. β̂MC β̂SPF β̂ER (L2, λ = 1) β̂PRL

0.01 0.0011508935 0.012582517 0.0009262215 8.309943e-04

0.1 0.0011936741 0.012089770 0.0012562599 9.562384e-04

0.3 0.0007916878 0.013961263 0.0011547485 1.328395e-03

0.5 0.0006302459 0.010734662 0.0011522811 1.341047e-03

0.7 0.0004535486 0.009515386 0.0016379383 9.416307e-04

0.9 0.0003130218 0.007776599 0.0017335710 1.884255e-03

1 0.0003260043 0.007166803 0.0018085053 1.599025e-03

10 0.0009515591 0.018573563 3.9904497069 6.878423e-02

30 0.0008952047 0.019629901 1.9867132388 5.612309e-01

50 0.0008756016 0.017714052 3.1891878291 1.274070e+00

70 0.0008986833 0.016322445 3.3426258427 3.396206e+00

100 0.0008614268 0.019277317 4.2921893238 1.001695e+01

1000 0.0009306356 0.021337788 5.4034255887 2.168555e+03

Table 3: Variance results for algorithms, n = 1000 and each experiment repeated

100 times.

Mean Squared Error (MSE)

β0 \ Est. β̂MC β̂SPF β̂ER (L2, λ = 1) β̂PRL

0.01 1.151451e-03 1.259732e-02 9.285781e-04 8.345448e-04

0.1 1.210621e-03 1.221330e-02 1.260902e-03 9.562645e-04

0.3 8.163878e-04 1.466608e-02 1.158955e-03 1.331496e-03

0.5 1.225674e-03 1.348375e-02 1.152432e-03 1.353459e-03

0.7 7.085345e-03 1.559603e-02 1.653421e-03 9.426423e-04

0.9 3.418901e-02 1.317933e-02 1.759401e-03 1.884397e-03

1 5.891930e-02 1.966671e-02 1.808809e-03 1.599667e-03

10 7.978440e+01 4.958183e+01 4.058651e+00 6.976251e-02

30 8.367999e+02 7.244554e+02 4.221557e+01 5.626822e-01

50 2.393910e+03 2.202866e+03 4.261163e+02 1.277446e+00

70 4.751047e+03 4.477029e+03 1.447317e+03 3.407400e+00

100 9.786627e+03 9.391372e+03 4.387385e+03 1.005616e+01

1000 9.978552e+05 9.938618e+05 9.289765e+05 2.174233e+03

Table 4: MSE results for algorithms, n = 1000 and each experiment repeated 100

times.
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For the algorithms which estimate large β0 as a small value a few plots have

been showed in order to have clear visual understanding how they have estimated

the values for the different scales of β0. For instance, in the Figure 1 there are

three plots the first one is only for β0 not greater than 1 the second one is for not

grater than 30 and the last one is for all values of β0, which also can be seen in the

Figure. Of course all the information available in the first plot is also available in

the subsequent ones also but not in a proper visual scale. If we look for the value

of β0 = 0.1 only the first plot provides exact information how well it is estimated.

Figure 1: Monte Carlo Algorithm 1 results on sample size 1000.

In the following Figure 2 are the results of the Stochastic Fixed Point Algorithm

4 for batch size 64 and maximum iterations 100. Note that non stochastic version of

this algorithm would have been computationally much more expensive and the batch

size have been chosen some fixed number as larger ones also give similar results.

Figure 2: Fixed Point Algorithm 4 results on sample size 1000.

For the Expected Rank Algorithm 5 there are three different versions that we

have discussed (no penalty and L1, L2 penalties). Figure 3 shows the results of the

algorithm with no penalty (only on plot here since it estimates the values β0 very

large even for small β0). Note that this algorithm estimates the values very large

which is a expected result as discussed during the development of the Algorithm,

i.e. objective function can be minimized (locally) by making the absolute value of

β large.

For the case of L1 penalty, three different values of penalty strength λ = 1, 10, 100
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Figure 3: Expected Rank Algorithm 5 (with no penalty) results on sample size 1000.

have been tried. Figure 4 shows the results for λ = 1, 10, 100 from left to right,

respectively (again one plot from each since the estimated values are large even for

small β0). Note that bigger the strength λ less noisy is the estimation, however even

for the case λ = 100 still we have very large estimates.

Figure 4: Expected Rank Algorithm 5 (with L1 penalty) results on sample size 1000.

For the case of L2 penalty, three different values of penalty strength λ = 0.1, 1, 10

have been tried for β0 ≤ 1. Figure 5 shows the results for λ = 0.1, 1, 10 from left

to right, respectively. In this case we see that for the case of 0.1 strength there still
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could be large estimation, but for the case of larger strengths (i.e. λ ≥ 1) we have

reasonable estimation.

Figure 5: Expected Rank Algorithm 5 (with L2 penalty) results on sample size 1000.

For larger β0 (i.e. β0 = 100, 1000) have been tried for penalty strength 1 and

Figure 6 shows the corresponding results.

Figure 6: Expected Rank Algorithm 5 (with L2 penalty) results on sample size 1000.

From the above results we understand that algorithms tend to shrink the size of

estimated β0 (except the non penalty and L1 penalty Expected Rank Algorithm).
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Moreover, the case of Expected Rank Algorithm with L2 penalty term for some

values of penalty strength the algorithm produces better estimates for beta0 for

larger than 1 case, but it also does not work for large β0 = 1000.

Now let us look at the results of Pairwise Rank Likelihood Algorithm 6. Figure

7 shows these results for β0 less than or equal 1, 100, 1000 from left to right, respec-

tively. We see that even for the case β0 = 1000 Pairwise Rank Likelihood Algorithm

estimates it correctly (median of the estimators of 100 experiments correspond to

the true value β0 and there is almost no outliers).

Figure 7: Pairwise Rank Likelihood Algorithm 6 on sample size 1000.

Comparing all the above results together we understand that Pairwise Rank

Likelihood Algorithm performs significantly better than the others. For large β0 the

other algorithms always shrink the parameter value, but the last algorithm estimates

it correctly.

The transformation function h estimation result is depicted in the Figure 8. The

red line is the true function h and the black dots are the estimated results on the

sample data points. We can see that estimation works quite good for all the points

in the dataset.

5.2 Results of PNL Models

The experiments here are also carried out mainly for sample size 1000 and 100 times

for each specific situation. The first part is for the bivariate PNL models and the

second part is for multivariate PNL models.

5.2.1 Results of Bivariate PNL models

For the bivariate models we simulate a dataset in the following way. For the cause

variable X(1) we simulate from standard normal distribution, i.e. X(1) ∼ N (0, 1)

and follow two models, namely identifiable (see Proposition 4.2) and non-identifiable

(see Proposition 4.1). For the function f2 we take f2(z) := z
1
3 + 4.7 for both cases
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Figure 8: Transformation function estimation on sample size 1000.

and for the parameter β we simulate it from a uniform distribution on (−100, 100),
i.e. β ∼ U(−100, 100) in each experiment. So, for the identifiable case we have

X(2) = (β(X(1))2 + ε)
1
3 + 4.7,

where X(1), ε2 ∼ N (0, 1) and β ∼ U(−100, 100), ε ⊥⊥ X(1). For the non-identifiable

case we have

X(2) = (βX(1) + ε)1/3 + 4.7,

where X(1), ε1 ∼ N (0, 1) and β ∼ U(−100, 100), ε ⊥⊥ X(1). For both cases we

used the Algorithm 7, where the noise estimation algorithm is is the combination of

Linear Transformation Algorithm(i.e. Algorithm 6) and (27) as described in Section

4. For both cases we fitted the models using the degree two polynomial for the

cause. i.e. if we fit the model as X(1) is the cause and X(2) is the effect, we used the

model h(X(2)) = β1X
(1)+β2(X

(1))2+ε in Linear Transformation Algorithms. From
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the Linear Transformation Models’ results we saw that Pairwise Rank Likelihood

Algorithm performed the best and as a results it produces the best results also for

the bivariate PNL models as we can see in the Table 5.

LTM alg \ model identifiable non-identifiable

Fixed Point 72% 72%

Expected Rank L1 (λ = 10) 72% 93%

Expected Rank L2 (λ = 10) 96% 98%

PRL 98% 99%

Table 5: Bivariate PNL results, n = 1000 and each experiment repeated 100 times.

The above table shows the results of two different bivariate PNL models(identifiable

and non-identifiable as described at the beginning of the subsection) using four dif-

ferent Linear Transformation Algorithms, namely (from top to bottom in the table)

Fixed Point 4, Expected Rank 5 with L1 penalty and λ = 10, Expected Rank 5 with

L2 penalty and λ = 10 and Pairwise Rank Likelihood 6.

Note that results in Table 5 are only for the cases if the underlying true model

corresponds to our model assumptions, i.e. noise is standard normal, f1 function in

the PNL model is quadratic.

5.2.2 Results of Multivariate PNL models

Pairwise Rank Likelihood Algorithm 6 performed better than the others both in

the Linear Transformation Models and in Bivariate PNL Models. Moreover, it

requires less computational time than the others. On top of that, its estimator

is asymptotically normal and consistent as showed in Theorem 2.2. Considering

all that, we only use Pairwise Rank Likelihood for the multivariate PNL model

estimation. For the estimation of the transformation function we use (27) as in the

bivariate case. These two provide the estimation of the noise. First example for the

multivariate PNL model we look at the diamond shape four node causal graph, i.e.

Figure 9. Note that for this case in all experiments we have the same graph only

the values of the nodes will change. For the second example we look at random

Erdős–Rényi causal graph where each edge has a probability of 2/(m−1) where the

m is the number of nodes in the graph. Example of Erdős–Rényi graph is depicted

in Figure 10. Note that, in this case for each experiment we sample a random

Erdős–Rényi graph and then simulate the PNL data according the the graph.

Having the graph, data simulation is carried out in the following way. If X(j)

has no parents in the graph, it is simulated from a standard normal distribution,
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X(1)

X(2) X(3)

X(4)

Figure 9: Diamond shape graph

X(1)

X(2) X(3)

X(4)

Figure 10: Example of Erdős–Rényi

graph for 4 nodes

i.e. X(j) ∼ N (0, 1). If X(j) has k parents, namely X(j1), . . . X(jk), then X(j) will

be X(j) = (
∑k

i=1(βiX
(ji) + γi(X

(j1))2) + εj)
1
3 + 4.7, where εj ∼ N (0, 1) and βi, γi ∼

U(−100, 100) for i ∈ [1, k]. For the diamond case X4 depends on its parent only in

a linear way.

Table 6 shows the results of order estimation Algorithm 9 for sample size 1000

and 100 experiments. We can see that for the diamond case results are much better

and reasonable explanation might be that the model is simpler than the other cases.

repetitions Diamond (4 nodes) Erdős–Rényi (4 nodes) Erdős–Rényi (7 nodes)

100 67% 18% 2%

1000 62.8% 17.5% 1.5%

Table 6: Multivariate PNL results, n = 1000.

sample size Diamond (4 nodes) Erdős–Rényi (4 nodes) Erdős–Rényi (7 nodes)

1000 67% 18% 2%

2000 71% 26% 6%

3000 77% 40% 2%

Table 7: Multivariate PNL results for different sample sizes. Number of datasets is

100.

For the case of Post-Nonlinear models (without Gaussian noise assumption and

fj,1 linear) using the General Transformation models computational time is very

expensive even for the bivariate case. For the sample size 100 it takes more than 7

hours to estimate the causal direction. However, using the Pairwise Rank Likelihood

for the PNLG models takes only a few minutes for the sample size 1000.
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6 Discussion

In this thesis we studied Post-Nonlinear causal model with Gaussian noise. We

employed Linear Transformation Models to obtain a sink node estimation method,

which produced causal order of the underlying true data generation process. Esti-

mated causal order is proved to be consistent with high probability. The performance

of the method is tested on the simulated data.

For the Linear Transformation Models (LTM) with Gaussian noise we developed

a Pairwise Rank Likelihood method to estimate the parameters. Estimated param-

eters proved to be consistent and asymptotically normal. We also studied existing

other LTMs, but the Pairwise Rank Likelihood gives the best result both in theory

and in practice.

Using LTMs we have estimated the noise based on the potential sink node (and

remaining nodes considered potential causes). Having the estimated noise we used

HSIC conditional independence criterion to test if the noise is independent of its

potential causes. The node which produced the least independence have been chosen

as sink node. Then, we removed estimated sink node and iterated same method until

a causal order. Using the quantitative property of the HSIC criterion we proved the

estimated causal order is consistent with high probability.

In order to generalize the above idea for general PNL models (without Gaussian

noise) we reviewed the General Transformation Models. Using the kernel smoothing

method estimators of the model have been obtained, which have similar asymptotic

properties as LTM estimators. This fact later on used to show how the method

developed for PNL models with Gaussian noise can be transferred to the general

case.
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A Appendix

Here we review some of the necessary results to obtain theoretical properties of our

estimators and presented the proofs which are more involved.

In A.1 we state and review the conditions which are necessary to obtain a asymp-

totic results of Linear Transformation Models. In A.2 stochastic Landau symbols

and consistency definition have been reviewed. A.3 discusses some of the relevant

results for U-statistics which later used to prove the asymptotic results of Linear

Transformation Models. Then in A.4 and A.5 the proofs of Linear Transformation

Models and Post-Nonlinear Models are presented, respectively.

A.1 Conditions

Here are some technical conditions, which are used to prove results in the text.

Most of them are standard assumptions used in statistical theory and some are

easily satisfied, which are discussed after the conditions.

Condition 0: With probability one the design matrix X := [1T , XT
1 , . . . , X

T
n ]
T

has full column rank.

Condition 1: Probability of ties in Yi’s is zero, i.e. P(Yi = Yj) = 0 for each

i ̸= j.

Condition 2: The following requirements are satisfied

EX

[
ϕ2
(
UT
21β0

)
Φ (UT

21β0) Φ (UT
12β0)

· (U21)
2

]
<∞

and

Σψ has full rank

where U21 = X2 −X1 and U12 = X1 −X2 and functions ϕ and Φ are probabil-

ity density and cumulative density functions of standard normal random variable,

respectively. For a kernel

ψ((X1, Y1), (X2, Y2)) := I(Y2 > Y1)
ϕ
(
UT
21β0

)
Φ (UT

21β0)
· U21 + I(Y2 ≤ Y1)

ϕ
(
UT
12β0

)
Φ (UT

12β0)
· U12

define ψ1((x1, y1)) := E[ψ((x1, y1), (X2, Y2))] and Σψ := V ar(ψ1((X1, Y1))).

First of all let us see that Condition 0 is easily satisfied. For the condition be

satisfied it is required that number of columns in X is at least the number of rows,

which is just a requirement that sample size is at least one bigger than number of

dimension of each data point. Now if we take arbitrary square sub-matrix in X and

compute the determinant of it, we obtain some non-zero polynomial of X1, . . . , Xn.
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The Lemma (only one lemma in the paper) in [Okamoto, 1973] states that such a

polynomial can be zero only on the Lebesgue measure zero. So, Condition 0 is a

reasonable assumption.

Condition 1 is satisfied if random variable Y has a continuous distribution with

respect to the Lebesgue measure, which covers many cases.

Condition 2 is a standard assumption in order to prove asymptotic results for

U-statistics, i.e. see the proof the asymptotic results in [Yu et al., 2021].

A.2 Stochastic Landau Symbols and Consistency

Assume we have random vectorsX1, X2, . . . . Then, the followings are the definitions

of Stochastic Landau Symbols:

1. Xn = op(1) if Xn
p→ 0.

2. Xn = Op(1) if ∀ϵ > 0 ∃C > 0 such that supn∈NP(∥Xn∥ > C) < ϵ.

3. Xn = op(αn) if Xn = αnYn with Yn = op(1)

4. Xn = Op(αn) if Xn = αnYn with Yn = Op(1)

We say Xn is consistent to X if ∥Xn −X∥ = op(1), Xn is strongly consistent to

X if Xn
a.s.→ X, where a.s. means almost sure convergence. Xn is αn consistent to X

if ∥Xn −X∥ = Op(αn).

Since, we use ∥Xn −X∥ = op(1) and Xn − X = op(1) interchangeably let us

prove their equivalence.

Proposition A.1. Assume {Xn}∞n=1 and X are defined on the same probability

space. Then, ∥Xn −X∥ = op(1) if and only if Xn −X = op(1).

Proof. For the direction =⇒ assume ∥Xn −X∥ = op(1). By the norm property we

have

|X(j)
n −X(j)

n | ≤ ∥Xn −X∥ for j ∈ [1,m],

where m is the dimension of X. So, we have

P(|X(j)
n −X(j)

n | > ϵ) ≤ P(∥Xn −X∥ > ϵ)→ 0 as n→∞,

which is the same as X
(j)
n −X(j)

n = op(1) for each j and so Xn −X = op(1).

For the direction ⇐= assume Xn −X = op(1). Now for every ϵ > 0 we have

P(∥Xn −X∥ > ϵ) = P(∥Xn −X∥2 > ϵ2) = P(
m∑
j=1

|X(j)
n −X(j)

n |2 > ϵ2)

59



= P(∃j ∈ [1,m] s.t. |X(j)
n −X(j)

n |2 > ϵ2/m)

≤
m∑
j=1

P(|X(j)
n −X(j)

n |2 > ϵ2/m)

=
m∑
j=1

P(|X(j)
n −X(j)

n | > ϵ/
√
m)→ 0 as n→∞,

where the first equality is just the definition of the norm. Second equality follows

from the fact that in order to some of the m variables be greater then ϵ2 we need at

least one of them is greater than ϵ2/m. The inequality is just a union bound. Last

equality is application of square root on both sides of the inequality and the last

convergence follows from the assumption Xn −X = op(1) and that m is fixed finite

number.

A.3 U-statistics

Since we are going to use the properties of U-statistics in some of the proofs, we will

introduce them in the following subsection A.3 and restate the results that we will

use.

The following is mostly from the books [Serfling, 1980] and [Vaart, 1998]. For

more detailed summary of the U-statistics please refer to the books.

Let X1, X2, . . . be independent samples from some distribution F . Assume for a

parametric function θ := θ(F ), i.e. the mean of the distribution, there is an unbiased

estimator. That is

θ = E[ψ(X1, . . . , Xk)],

for some symmetric function ψ, called a ”kernel”.

The following estimator for the estimation of θ based on the sample X1, . . . , Xn

of size n ≥ m

Un := U(X1, . . . , Xn) =

(
n

k

)−1∑
ψ(Xi1 , . . . , Xik)

is called U-statistic, where the summation is over all possible
(
n
k

)
combinations of

distinct elements {i1, . . . , ik} from {1, . . . , n}. The linearity of the expectation gives

that Un is an unbiased estimator for θ.

The following Theorem A.1 is a generalization of the classical (i.e. for i.i.d.

sample) Strong Law of Large Numbers (SLLN), which is the Theorem A in the

[Serfling, 1980] of section 5.4.

Theorem A.1. If E[|ψ(X1, . . . , Xm)|] <∞, then Un
a.s.→ θ, where a.s. means almost

sure convergence.
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Asymptotic normality of the U-statistics can be established by projection method.

The projection of Un − θ onto the set of all statistics of the form
∑n

j=1 gj(Xj) for

some function g1, . . . , gn, is defined as

Ūn =
n∑
j=1

E[Un − θ|Xj] =
k

n

n∑
j=1

ψ1(Xj),

where

ψ1(x) := E[ψ(x,X2, . . . , Xk)]− θ

and define the first order variance of the U-statistics as

Σ1 := V ar(ψ1(X1)).

The following establishes the asymptotic normality of the U-statistics under the

condition that first order variance exists, i.e. see [Vaart, 1998] Theorem 12.3.

Theorem A.2. If E[(ψ(X1, . . . , Xm))
2] <∞, then

√
n(Un − θ− Ūn) = op(1). Con-

sequently,
√
n(Un − θ)

d→ N (0, k2Σ1).

The idea of Ūn is to project the U-statistics Un that their difference will be

asymptotically negligible and the projection is sum of i.i.d. samples and use the

Central Limit Theorem for it.

A.4 Proofs of Section 2

A.4.1 Proof of Proposition 2.2

Before proving proposition 2.2 let’s state and prove two lemma’s which immediately

imply 2.2 in order to keep the proofs readable.

Lemma A.1. The following inequality holds for arbitrary z ∈ R

ϕ′(z)Φ(z)− (ϕ(z))2 < 0.

Proof. Denoting h(z) := ϕ′(z)Φ(z) − (ϕ(z))2 we need to show that h(z) < 0. Sub-

stituting the values of the derivative of the ϕ we will have

h(z) = −zϕ(z)Φ(z)− (ϕ(z))2 = ϕ(z)(−zΦ(z)− ϕ(z)).

Since ϕ(z) > 0 for arbitrary z, h(z) < 0 is equivalent to g(z) := −zΦ(z)− ϕ(z) < 0

which is obvious for z ≥ 0. In order to prove that g(z) < 0 let’s look at the derivative

of g which is

g′(z) = −Φ(z)− zϕ(z) + zϕ(z) = −Φ(z) < 0.
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So, g is strictly decreasing function, which means that it will be maximum when

z → −∞ which is

lim
z→−∞

g(z) = lim
z→−∞

(−zΦ(z)− ϕ(z)) = − lim
z→−∞

zΦ(z) = − lim
z→−∞

Φ(z)
1
z

= lim
z→−∞

ϕ(z)
1
z2

= lim
z→−∞

1√
2π

z2

ez2/2
= 0,

where the first equality of the second line follows from the L’Hôpital’s rule. Thus,

g(z) is strictly decreasing and the limit in −∞ is zero whcih gives g(z) < 0 for all

z ∈ R and this completes the proof of the lemma.

Lemma A.2. The function

f(x) = log Φ(cTx)

is concave, where Φ is the CDF function of standard normal distribution and x, c ∈
Rm for some nonzero constant c and m ∈ N. Moreover, if vT∇2f(x)v = 0 for some

vector v and Hessian matrix ∇2f(x) if and only if vT c = 0.

Proof. Since function f is twice differentiable, it is enough to show that Hessian of

f(x) is negative definite. The gradient of f is the following

∇f(x) = ϕ(cTx)

Φ(cTx)
c,

where ϕ is the pdf function of standard normal distribution, which gives that the

Hessian is

∇2f(x) =
ϕ′(cTx)Φ(cTx)− (ϕ(cTx))2

(Φ(cTx))2
· ccT .

So, for arbitrary v ∈ Rm we have

vT∇2f(x)v = vT
ϕ′(cTx)Φ(cTx)− (ϕ(cTx))2

(Φ(cTx))2
· ccTv

=
ϕ′(cTx)Φ(cTx)− (ϕ(cTx))2

(Φ(cTx))2
· vT ccTv

=
ϕ′(cTx)Φ(cTx)− (ϕ(cTx))2

(Φ(cTx))2
· (vT c)2 ≤ 0,

where the last step follows from the lemma A.1 and the fact that (vT c)2 ≥ 0.

Moreover, vT∇2f(x)v = 0 if and only if vT c = 0, which completes the proof the the

lemma.

Now let’s prove the proposition 2.2.
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Proof. From 25 we have

ℓprl(β) =

(
n

2

)−1∑
i<j

I(Yj > Yi) log Φ

(
(Xj −Xi)

Tβ√
2

)
+ I(Yj ≤ Yi) log Φ

(
(Xi −Xj)

Tβ√
2

)
and since indicator function return either one or zero, lemma A.2 gives that ℓprl(β)

is a sum of concave functions. As sum preserves the concavity, we have ℓprl(β) is

concave.

Now assume that ℓprl(β) is not strictly concave. This imples that there is a vector

v such that vT∇2ℓprl(β)v = 0 for the Hessian matrix ∇2ℓprl(β) of ℓprl(β). Since the

Hessian operator is linear, we have ∇2ℓprl(β) is a sum of the Hessians, that is

∇2ℓprl(β) =

(
n

2

)−1∑
i<j

I(Yj > Yi)∇2 log Φ

(
(Xj −Xi)

Tβ√
2

)
+ I(Yj ≤ Yi)∇2 log Φ

(
(Xi −Xj)

Tβ√
2

)
.

Lemma A.2 gives that vT∇2 log Φ
(

(Xj−Xi)
T β√

2

)
v = 0 if and only if vT (Xj −Xi) = 0,

but the same things implies vT∇2 log Φ
(

(Xi−Xj)
T β√

2

)
v = 0 condition. Moreover,

we have for each fixed i, j, exactly one of the I(Yj > Yi) or I(Yj ≤ Yi) is 1. So,

vT∇2ℓprl(β)v = 0 implies that vT (Xj−Xi) = 0 for all i and j. This means that XT
j v

is constant for all j, i.e. XT
j v = c for some constant c ∈ R, which gives the matrix

X := [1T , XT
1 , . . . , X

T
n ] does not have full column rank, i.e. taking u = (−c, vT )T

impliesXu = 0. This contradicts to the assumption of the Proposition, which means

ℓprl(β) is strictly concave function, which completes the proof.

A.4.2 Proof of Theorem 2.2

In order to keep the formulas compact and readable, define Uij =
Xi−Xj√

2
, which gives

ℓprl(β) =

(
n

2

)−1∑
i<j

I(Yj > Yi) log Φ
(
UT
jiβ
)
+ I(Yj ≤ Yi) log Φ

(
UT
ijβ
)
.

Since we will use the Taylor expansion of ℓprl(β̂PRL) around β0, we need some prop-

erties of the gradient of ℓprl(β) at β0, which are established in the following lemmas.

Lemma A.3. Assume that the Condition 1 in the Appendix A.1 holds, then ∇βℓprl(β0)

converges to zero almost surely, that is

∇βℓprl(β0)
a.s.→ 0.
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Proof. The gradient is

∇βℓprl(β0) =

(
n

2

)−1∑
i<j

I(Yj > Yi)
ϕ
(
UT
jiβ0

)
Φ
(
UT
jiβ0

) · Uji + I(Yj ≤ Yi)
ϕ
(
UT
ijβ0

)
Φ
(
UT
ijβ0

) · Uij,
which we recognize, to be a U-statistic for the kernel

ψ((X1, Y1), (X2, Y2)) := I(Y2 > Y1)
ϕ
(
UT
21β0

)
Φ (UT

21β0)
· U21 + I(Y2 ≤ Y1)

ϕ
(
UT
12β0

)
Φ (UT

12β0)
· U12.

Note that, ψ((X1, Y1), (X2, Y2)) is a symmetric kernel as Condition 1 in the Appendix

A.1 assumes that there is no ties in Yi’s and so I(Y2 ≤ Y1) = I(Y2 < Y1), which

implies that ψ((X1, Y1), (X2, Y2)) = ψ((X2, Y2), (X1, Y1)).

Since we would like to use the Theorem A.1 let us compute the expectation of

the kernel ψ and then show that its absolute value has finite first moment.

E[ψ((X1, Y1), (X2, Y2))]

= E

[
I(Y2 > Y2)

ϕ
(
UT
21β0

)
Φ (UT

21β0)
· U21 + I(Yj ≤ Yi)

ϕ
(
UT
12β0

)
Φ (UT

12β0)
· U12

]

= EX

[
EY [I(Yj > Yi)|X]

ϕ
(
UT
21β0

)
Φ (UT

21β0)
· U21 + EY [I(Yj ≤ Yi)|X]

ϕ
(
UT
12β0

)
Φ (UT

12β0)
· U12

]

= EX

[
P(Yj > Yi|X)

ϕ
(
UT
21β0

)
Φ (UT

21β0)
· U21 + P(Yj ≤ Yi|X)

ϕ
(
UT
12β0

)
Φ (UT

12β0)
· U12

]

= EX

[
Φ
(
UT
21β0

) ϕ (UT
21β0

)
Φ (UT

21β0)
· U21 + Φ

(
UT
12β0

) ϕ (UT
12β0

)
Φ (UT

12β0)
· U12

]
= EX

[
ϕ
(
UT
21β0

)
· U21 + ϕ

(
UT
12β0

)
· U12

]
= EX

[
ϕ
(
UT
21β0

)
· [U21 + U12]

]
= EX

[
ϕ
(
UT
21β0

)
·
[
Xj −Xi√

2
+
Xi −Xj√

2

]]
= EX [0] = 0,

where the first two equalities follow from the linearity of the expectation and the

tower rule of the expectation, i.e. E[Q(X, Y )] = E[E[Q(X, Y )|X]] for any function

Q. The third equality is just an application of expectation on the indicator function

is the probability. The fourth equality from the monotonicity of function h in the

Linear Transformation model. The fifth step is just a cancellation of the equal

members in the fractions. Note that here they will be canceled only if we are

considering the true parameter β0 in E[∇βℓprl(β0)]. Finally, the sixth equality follows

from the fact that ϕ(x) = ϕ(−x) for the probability density function of standard

normal random variable ϕ.

Now let us show that absolute value the kernel ψ has finite expectation, where by

the absolute value of a vector c = (c1, . . . , cd)
T for some d ∈ N we mean by element
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wise absolute values, i.e. |c| := (|c1|, . . . , |cd|). So,

E[|ψ((X1, Y1), (X2, Y2))|]

≤ E

[
I(Y2 > Y2)

ϕ
(
UT
21β0

)
Φ (UT

21β0)
· |U21|+ I(Yj ≤ Yi)

ϕ
(
UT
12β0

)
Φ (UT

12β0)
· |U12|

]

= EX

[
Φ
(
UT
21β0

) ϕ (UT
21β0

)
Φ (UT

21β0)
· |U21|+ Φ

(
UT
12β0

) ϕ (UT
12β0

)
Φ (UT

12β0)
· |U12|

]

= ϕ
(
UT
12β0

)
· 2 · |Xi −Xj|√

2
<∞,

where in the first step we used the triangle inequality for the absolute value and the

others are similar to the calculation for the expectation of the kernel ψ. The last

quantity is finite since we have probability density function of the standard normal

distribution is bounded on the whole real line.

Having the requirements satisfied in the Theorem A.1 and the expectation of the

kernel is zero, we have

∇βℓprl(β0)
a.s.→ 0,

which completes the proof of Lemma.

Lemma A.4. Assume that the Condition 1-2 in the Appendix A.1 hold, then
√
n∇βℓprl(β0)

is asymptotically normal in the following way

√
n∇βℓprl(β0)

d→ N (0,Σψ),

where Σψ defined in Condition 2.

Proof. Similar to the proof of the Lemma A.3 we have

∇βℓprl(β0) =

(
n

2

)−1∑
i<j

I(Yj > Yi)
ϕ
(
UT
jiβ0

)
Φ
(
UT
jiβ0

) · Uji + I(Yj ≤ Yi)
ϕ
(
UT
ijβ0

)
Φ
(
UT
ijβ0

) · Uij,
is a U-statistics with symmetric kernel

ψ((X1, Y1), (X2, Y2)) := I(Y2 > Y1)
ϕ
(
UT
21β0

)
Φ (UT

21β0)
· U21 + I(Y2 ≤ Y1)

ϕ
(
UT
12β0

)
Φ (UT

12β0)
· U12.

Since we would like to use the Theorem A.2 we need to show that E[(ψ((X1, Y1), (X2, Y2)))
2] <

∞, that is

E[(ψ((X1, Y1), (X2, Y2)))
2]

= E

[
I(Y2 > Y1)

ϕ2
(
UT
21β0

)
Φ2 (UT

21β0)
· (U21)

2 + I(Y2 ≤ Y1)
ϕ2
(
UT
12β0

)
Φ2 (UT

12β0)
· (U12)

2

]
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= EX

[
Φ
(
UT
21β0

) ϕ2
(
UT
21β0

)
Φ2 (UT

21β0)
· (U21)

2 + Φ
(
UT
12β0

) ϕ2
(
UT
12β0

)
Φ2 (UT

12β0)
· (U12)

2

]

= EX

[
ϕ2
(
UT
21β0

)
Φ (UT

21β0)
· (U21)

2 +
ϕ2
(
UT
12β0

)
Φ (UT

12β0)
· (U12)

2

]

= EX

[
ϕ2
(
UT
21β0

)
Φ (UT

21β0) Φ (UT
12β0)

· (U21)
2

]
<∞

where the square of a vector is taken element wise. The first equality follows from the

facts that square of the indicator function is the same and I(Y2 > Y1)·I(Y2 ≤ Y1) = 0.

The second equality is the tower rule of the expectation and that function h is

increasing. The third one is just cancellation of terms. In the fourth equality we

used that U21 = −U12, U
2
21 = U2

12,Φ
(
UT
12β0

)
= 1−Φ

(
UT
21β0

)
. The final inequality is

just the Condition 2.

Now we have that the conditions of the Theorem A.2 are satisfied for U-statistics

∇βℓprl(β0) and note that the expectation of the kernel is zero, it gives

√
n∇βℓprl(β0)

d→ N (0,Σψ),

which complete the proof.

Lemma A.5. Assume ∥β − β0∥2 = a for some a > 0 and Condition 0 in the in the

Appendix A.1 is satisfied. Then

P(ℓprl(β) < ℓprl(β0) ∀β, ∥β − β0∥ = a)→ 1.

Proof. Taylor expansion around β0 gives

ℓprl(β)− ℓprl(β0) = (β − β0)T∇βℓprl(β0) +
1

2
(β − β0)T∇2

βℓprl(β
∗)(β − β0),

where ∥β∗ − β0∥2 ≤ ∥β − β0∥2 = a, i.e. β∗ is in the closed ball around β0 with

radius a. Clearly, ∇2
βℓprl(β

∗) is continuous with respect to β∗). Moreover, Proposi-

tion 2.2 gives that maximum eigenvalue of ∇2
βℓprl(β

′) negative for all β′ such that

∥β∗ − β0∥2 ≤ a. So, continuity of the eigenvalues of the matrix gives that ∇2
βℓprl(β

′)

eigenvalues of all the matrices such that ∥β′ − β0∥2 ≤ a has a maximum eigenvalue

less than zero by the compactness of the ball around β0 and radius a. In particular,

∇2
βℓprl(β

∗) matrix has maximum eigenvalue λmax < 0, which gives that

1

2
(β − β0)T∇2

βℓprl(β
∗)(β − β0) ≤

λmax
2
∥β − β0∥2 .

On the other hand, the term (β − β0)T∇βℓprl(β0) can be made arbitrarily small by

the previous Lemma, that is, Lemma A.3 gives with probability tends to 1

|(β − β0)T∇βℓprl(β0)| < −
λmax
4
∥β − β0∥2 .
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From the above inequalities, we obtain, with probability tends to 1

(β − β0)T∇βℓprl(β0) +
1

2
(β − β0)T∇2

βℓprl(β
∗)(β − β0) <

λmax
4
∥β − β0∥2 < 0.

Thus

P(ℓprl(β) < ℓprl(β0) ∀β, ∥β − β0∥2 = a)→ 1.

Now let us prove the first part of the Theorem 2.2. i.e. β̂PRL − β0 = op(1).

Proof. From Lemma A.5, we have for arbitrary fixed a > 0 there is a maximum

of ℓprl(β) with probability tends to 1, such that ∥β − β0∥2 < a, but β̂PRL is the

maximum of the ℓprl(β), so,

P
(∥∥∥β̂PRL − β0∥∥∥

2
< a
)
→ 1 as n→∞,

which is the same as β̂PRL − β0 = op(1).

Now let us prove the second part of the Theorem.

Proof. Since β̂PRL maximizes the pairwise rank log-likelihood, it make sthe gradient

of it zero. Then, first order Taylor expansion of the gradient of pairwise rank log-

likelihood gives

0 = ∇βℓprl(β̂PRL) = ∇βℓprl(β0) +∇2
βℓprl(β

∗)(β̂PRL − β0),

for some β∗ such that ∥β∗ − β0∥2 ≤
∥∥∥β̂PRL − β0∥∥∥

2
= op(1) (from the first part of

the theorem). The above equality gives

√
n(β̂PRL − β0) = (−∇2

βℓprl(β
∗))−1(

√
n∇βℓprl(β0)).

The second part of the Theorem will be proved if we show that

√
n∇βℓprl(β0)

d→ N (0,Σψ) and (47)

−∇2
βℓprl(β

∗)
p→ Σ, (48)

Since by Slutsky we will have

(−∇2
βℓprl(β

∗))−1(
√
n∇βℓprl(β0))

d→ Σ−1N (0,Σψ)

From Lemma A.4 we have that (47) holds. In order to prove (48) let us calculate

the hessian of the ℓprl(β
∗)). Using the fact that for a function f(β) = log Φ(cTβ)

the hessian is ∇βf(β) =
ϕ′(cT β)Φ(cT β)−(ϕ(cT β))2

(Φ(cT β))2
· ccT for a constant vector c, we have
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∇2
βℓprl(β

∗) =

(
n

2

)−1∑
i<j

I(Yj > Yi)
ϕ′(UT

jiβ
∗)Φ(UT

jiβ
∗)− (ϕ(UT

jiβ
∗))2

(Φ(UT
jiβ

∗))2
· UjiUT

ji

+

(
n

2

)−1∑
i<j

I(Yj ≤ Yi)
ϕ′(UT

ijβ
∗)Φ(UT

ijβ
∗)− (ϕ(UT

ijβ
∗))2

(Φ(UT
ijβ

∗))2
· UijUT

ij

p→
(
n

2

)−1∑
i<j

I(Yj > Yi)
ϕ′(UT

jiβ0)Φ(U
T
jiβ0)− (ϕ(UT

jiβ0))
2

(Φ(UT
jiβ0))

2
· UjiUT

ji

+

(
n

2

)−1∑
i<j

I(Yj ≤ Yi)
ϕ′(UT

ijβ0)Φ(U
T
ijβ0)− (ϕ(UT

ijβ0))
2

(Φ(UT
ijβ0))

2
· UijUT

ij

= ∇2
βℓprl(β0),

where the convergence in probability follows from the fact that β∗ p→ β0 and the

Continuous Mapping Theorem (i.e. Theorem 2.3 in [Vaart, 1998]). Now, once again

using the Continuous Mapping Theorem we obtain

−∇2
βℓprl(β

∗)
p→ −∇2

βℓprl(β0) = Σ,

where Σ is positive definite as ℓprl(β) is strictly concave provided Condition 0 holds.

This completes the proof of (48) and so the proof of the Theorem.

A.5 Proofs of Section 4

Here are the proofs of the results in Section 4

A.5.1 Proofs of Bivariate PNL

The following is the proof of Corollary 4.1.

Proof. Choosing ε1 :=
1√
β2+1

X(1) − β√
β2+1

ε2 we obtain

X(1) =
1√
β2 + 1

(
β√
β2 + 1

(X(2))3 + ε1

)
. (49)

Using equation 49, Corollary will be proved if we show that ε1 ∼ N (0, 1) and

ε1 ⊥⊥ X(2). Since ε1 is a linear combination of two independent standard normal

random variables, it follows that ε1 is a normal random variable. Moreover,

E[ε1] = E

[
1√
β2 + 1

X(1) − β√
β2 + 1

ε2

]
=

1√
β2 + 1

E[X(1)]− β√
β2 + 1

E[ε2] = 0,
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and

Var(ε1) =

(
1√
β2 + 1

)2

+

(
β√
β2 + 1

)2

= 1,

which implies that ε1 ∼ N (0, 1). Now it remained to show that ε1 and X(2) are

independent. For that purpose let’s look at the transformation from (X(1), ε2) to

(X(2), ε1). The Jacobian of the transformation is

J =

β3 (βx(1) + e2)
−2/3 1

3
(βx(1) + e2)

−2/3

1√
β2+1

− β√
β2+1

 .
So, |det(J)| =

√
β2+1

3
(βx(1) + e2)

−2/3 =

√
β2+1

3
(x(2))−2, which gives that

pX(2),ε1(x
(2), e1) = pX(1),ε2(x

(1), e2)|det(J)|−1 =
1

2π
exp

[
−(x(1))2

2
− e22

2

]
3(x(2))2√
β2 + 1

=
1

2π
exp

[
−1

2

(
(x(1))2 + ((x(2))3 − βx1)2

)] 3x22√
β2 + 1

=
1

2π
exp

−1

2

(
β

β2 + 1
(x(2))3 +

1√
β2 + 1

e1

)2


exp

−1

2

(
(x(2))3 − β2

β2 + 1
(x(2))3 − β√

β2 + 1
e1

)2
 3(x(2))2√

β2 + 1

=
3(x(2))2

2π
√
β2 + 1

exp

−1

2

(
β

β2 + 1
(x(2))3 +

1√
β2 + 1

e1

)2


exp

−1

2

(
1

β2 + 1
(x(2))3 − β√

β2 + 1
e1

)2


=

[
3(x(2))2

√
2π
√
β2 + 1

exp

[
−1

2

1

β2 + 1
(x(2))6

]]
×
[

1√
2π
exp

[
−1

2
e21

]]
.

Above equality gives X(2) and ε1 are independent, which completes the proof.

The following is the proof of Corollary 4.2.

Proof. The intuition that the model is identifiable is that the values of X(2) depend

only on the absolute value of X(1). So, the sign information is lost in X(2) and it

should not be possible to obtain X(1) from X(2).

For the strict proof let’s assume that backward direction is also possible, that is

there exist invertible function g2 and potentially nonlinear function g1 such that

X(1) = g2(g1(X
(2)) + ε1),
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where ε1 ⊥⊥ X(2). Since noise variable ε2 is standard normal, Table 1 gives that

T := g−1
2 (X(1)) is normal random variable and β(g2(T ))

2 function is linear in T .

This is not possible since normality gives that values of T are the whole real line

and β(g2(T ))
2 always has the sign of β. So, backward direction is not possible and

this is the same as being identifiable.

A.5.2 Proofs of Multivariate PNL

In order to facilitate the proofs let us state and prove the following lemma.

Lemma A.6. Assume X is a p dimensional random vector and denote Y = g(X)

for some function g : Rp → R. Let {Xj}nj=1 be n i.i.d. copies of X and ĝ be

a estimator of g based on {Xj}nj=1. Moreover, {xj}nj=1 are observed sample and

yj = g(xj), ŷj = ĝ(xj) for j ∈ [1, n]. Denote S := {xj, yj}nj=1 and Ŝ := {xj, ŷj}nj=1.

Then, provided

max
j
|ŷj − yj)| = op(1),

we have

|HSIC(Ŝ)−HSIC(S)| = op(1)

where HSIC is defined with the kernels k(·, ·) and l(·, ·) and l(u, v) is function of

u− v, which is Lipschitz with constant Cl and k(·, ·) is bounded by one.

Proof. Since xi’s are the same in both datasets Ŝ and S we have

HSIC(Ŝ) = (n− 1)−2tr(KHL̂H) and HSIC(S) = (n− 1)−2tr(KHLH),

where H is the same as defined in the definition of HSIC, Kij = k(xi, xj), Lij =

l(yi, yj) and L̂ij = l(ŷi, ŷj). Denoting A := HKH, we obtain

A = HKH = (I − n−111T )K(I − n−111T ) = (I − n−111T )(K − n−1K11T )

= K − 2

n
K11T +

1

n2
11TK11T = K − 2

n
K11T +

1

n2
1TK111T .

So,

|Ai,j| = |Kij −
2

n

n∑
t=1

Kit +
1

n2

n∑
t,s=1

Kts| ≤ |Kij|+
2

n

n∑
t=1

|Kit|+
1

n2

n∑
t,s=1

|Kts|

≤ 1 + 2 + 1 = 4,

where the first inequality follows from the triangle inequality of the absolute value

and the second one from the fact that kernel k(·, ·) is bounded by one. So, the

definition of HSIC gives

|HSIC(Ŝ)−HSIC(S)| (E.1)= |(n− 1)−2tr(KHL̂H)− (n− 1)−2tr(KHLH)|
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(E.2)
=

1

(n− 1)2
|tr(HKHL̂)− tr(HKHL)|

(E.3)
=

1

(n− 1)2
|tr(HKH(L̂− L)| = 1

(n− 1)2
|tr(A(L̂− L)|

(E.4)
=

1

(n− 1)2
|

n∑
i,j=1

Aij(L̂ij − Lij)|

(I.1)

≤ 1

(n− 1)2

n∑
i,j=1

|Aij| · |(L̂ij − Lij)|

(I.2)

≤ 4

(n− 1)2

n∑
i,j=1

|(L̂ij − Lij)|

(E.5)
=

4

(n− 1)2

∑
i ̸=j

|(L̂ij − Lij)|

(E.6)
=

4

(n− 1)2

∑
i ̸=j

|l(ŷi, ŷj)− l(yi, yj)|

(I.3)

≤ 4Cl
(n− 1)2

∑
i ̸=j

|ŷi − ŷj − (yi − yj)|

(I.4)

≤ 4Cl
(n− 1)2

∑
i ̸=j

[|ŷi − yi)|+ |ŷj − yj)|]

(E.7)
=

8Cl(n− 1)

(n− 1)2

n∑
j=1

|ŷj − yj)|
(E.8)
=

8Cl
n− 1

n∑
j=1

|ŷj − yj)|

(I.5)

≤ 8Cln

n− 1
·max

j
|ŷj − yj)|

p→ 0,

where (E.1) follows from the definition of HSIC, (E.2) is the positive homogeneity

of absolute value and the fact that tr(AB) = tr(BA) for any square matrices A

and B. (E.3) is the linearity of trace operator. Recalling the property of the trace:

tr(AB) =
∑

i,j AijBij (or just calculating it), gives (E.4). Triangle inequality of

absolute value gives (I.1) and (I.4). The above bound on Aij, gives (I.2) and (E.5)

follows form the fact that L̂i,j = Lij = 1. (E.6) is just the definition of matrices L̂

and L. For (I.3) we used that kernel l(u, v) is a Lipschitz function of u − v with

the constant Cl. (E.7) and (E.8) are simple calculations. In I.5 we just replaced all

the items in the summation by the maximum of them and final convergence follows

from the assumptions. This concludes the proof.

The following is the proof of Proposition 4.2.

Proof. Let us fix some k ∈ [1.m] and consider two cases:

Case 1: X(k) is a sink node.

From the assumption (A3) we have that there is strictly increasing function fk,2
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and a vector βk such that

f−1
k,2 (X

(k)) = PAT
k βk + εk,

where PAk are the parents of X(k) in G0 and εk is standard normal distributed.

Note that this is exactly the Linear Transformation Model (5). Since, (A2) gives

that the assumptions of Theorems 2.2 and 2.3 are satisfied we have estimators ĥ

and β̂ satisfy the conditions of Lemma 2.2 satisfied, which gives for

ε̂
(k)
j = ĥ(v

(k)
j )− (v

(−k)
j )T β̂ for j ∈ [1, T ]

we have

ε̂
(k)
j − ϵkj = op(1) for j ∈ [1, T ],

where ϵkj = f−1
k,2 (X

(−k)
j )−PAT

k βj. Since, T is fixed the above is the same as

max
j
|ε̂(k)j − ϵkj | = op(1). (50)

Note that having T fixed is important here to be able to argue that the above holds.

The equation (50) gives that the assumptions of Lemma A.6 are satisfied and we

have

HSIC({v(−k)j , ε̂
(k)
j }Tj=1) = HSIC({v(−k)j , ϵkj}Tj=1) + op(1). (51)

On the other hand since X(k) is a sink node the PNLG model gives that noise

is independent form the causes, so HSIC(Pεk,X(−k)
) = 0, where (X(−k), X(k)) is dis-

tributed according to the PNLG model and εk is the noise variable corresponding to

the node X(k)). Thus, HSIC(Pεk,X(−k)
) = 0 and Theorem 4.2 gives, with probability

at least 1− δ/m we have

|HSIC({v(−k)j , ε̂
(k)
j }Tj=1)| = |HSIC(Pε

k,X(−k)

)−HSIC({v(−k)j , ε̂
(k)
j }Tj=1)|

<

√
log(6m/δ)

α2T
+
C

T
<
ξ

2
,

where the last inequality is the assumption of the Theorem. Combining the above

with (51) gives with probability at least 1− δ/m we have

tk := HSIC({v(−k)j , ε̂
(k)
j }Tj=1) < ξ/2 as n→∞.

Case 2: X(k) is not a sink node.

In (A1) putting A := [1,m]∩{k} we will have X(A) contains a child of X(k) as X(k)

is not a sink node.
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Let ĥ, β̂, X(k), X(−k) and ε̂
(k)
j be defined similar to the previous case and define

N := ĥ(X(k))− (X(−k))T β̂. So, (A1) gives

HSIC(PN,X(−k)

) > ξ. (52)

On the other hand Theorem 4.2 gives with probability at least 1− δ/m we have

|HSIC(PN,X(−k)

)−HSIC({v(−k)j , ε̂
(k)
j }Tj=1)| ≤

√
log(6m/δ)

α2T
+
C

T
<
ξ

2
,

where the last inequality follows from the assumption of Theorem. Combining the

above with (52) and using the triangle inequality gives with probability at least

1− δ/m we have

tk := HSIC({v(−k)j , ε̂
(k)
j }Tj=1)

≥ HSIC(PN,X(−k)

)− |HSIC(PN,X(−k)

)−HSIC({v(−k)j , ε̂
(k)
j }Tj=1)|

> ξ − ξ/2 = ξ/2 as n→∞.

Now let us combine the above two cases. They give us that with probability at

least 1 − δ/m and sample size n → ∞, we have tk < ξ/2 in case of X(k) is a sink

node and tk > ξ/2 in case of X(k) is not a sink node. Thus, we conclude for

π̂(m) = argmin
k
{tk},

is a consistent sink node with probability at least 1− δ/m, that is

P(π̂(m) is a sink node) ≥ 1− δ/m as n→∞.
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