Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Maresa Schröder
Titel:
Explanations from the Latent Space: The Need for Latent Feature Saliency Detection in Deep Time Series Classification
Abstract:
Deep Leaning models are widely used for time series classification. For understanding the decision-making process of the model and identifying artifacts, explainability methods for these black-box classifiers are necessary. State-of-the-art saliency methods, originally developed for image data, assign importance scores to image pixels, providing visual explainability by highlighting informative regions in images. These methods have also been utilized for time series classification, where they eq...     »
Fachgebiet:
MAT Mathematik
DDC:
510 Mathematik
Aufgabensteller:
Mathias Drton
Betreuer:
Narges Ahmidi, Oleksandr Zadorozhnyi, Alireza Zamanian
Gutachter:
Mathias Drton
Jahr:
2022
Quartal:
2. Quartal
Jahr / Monat:
2022-06
Monat:
Jun
Seiten/Umfang:
94
Sprache:
en
Hochschule / Universität:
Technische Universität München
Fakultät:
Fakultät für Mathematik
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
Annahmedatum:
14.06.2022
 BibTeX