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Abstract
Deep Leaning models are widely used for time series classification. For understanding
the decision-making process of the model and identifying artifacts, explainability
methods for these black-box classifiers are necessary. State-of-the-art saliency methods,
originally developed for image data, assign importance scores to image pixels, providing
visual explainability by highlighting informative regions in images. These methods have
also been utilized for time series classification, where they equally highlight informative
temporal patterns i.e. shapelets. Nevertheless, in time series data the class label
might as well depend on latent information rather than temporal regions, such as a
difference in the time series dominant frequencies. In this setting, common explainability
methods fail to provide accurate results. We thus identify a need for improvement
in explainability methods for time series. To the best of our knowledge, there are
no methods currently in the literature that can visually explain how latent-patterned
time series are classified. In this thesis, we shed light to this concern by empirically
showing the shortcomings of current explainability methods for the mentioned time
series scenario. To offer a solution, we propose an extension for existing methods
which provides latent saliency results based on time-step-wise importance scores. In
order to find the best candidate to augment with our extension, we examine various
explainability method-classifier pairs. We restrict our study to Fourier series models and
its corresponding frequency, amplitude and phase shift latent parameters, to provide
a sensible scope for the thesis. We argue, nevertheless, that the same approach can
be used to solve the problem with respect to other latent models. Our main focus
throughout this thesis is on a local latent saliency framework, however, we provide
primary remarks about obtaining global latent saliency results as well.
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Chapter 1

Introduction

1.1 Problem definition
Deep neural networks provide state-of-the-art performance on most time series classifi-
cation problems [40]. Although these networks have become highly popular over the
last two decades for various different tasks as image classification, speech recognition
or document classification, there is still little insight into their internal decision process.
This is not only extremely unsatisfactory from a scientific point of view [104], but also
poses a high risk in real world application. Especially in safety critical applications
such as health care or autonomous vehicles, interpretable and trustworthy results
are essential [37]. This is why the utility of deep learning methods in real world
scenarios is highly regulated and limited by the safety regulations. The pressure on
developers to equip black-box artificial intelligence (AI) models with explainability and
interpretability was increased when the EU General Data Protection Regulation [28]
was implemented in 2016, mandating explainability in the context of automated de-
cision making. Nevertheless, the establishment of trust and confidence in AI models
is not the only requirement that calls for explainability. During model development,
explainability aids to identify prediction biases and failure modes. Models often base
their decision process on artifacts (aspects which falsely influence the prediction) in the
data. Detection of such Clever Hans strategies [74] is indispensable before real-world
usage [58]. Moreover, in situations where AI surpasses human capability, explainability
serves as a knowledge intermediary allowing humans to extract high-level knowledge
from the machines’ superior decision making [83]. Due to the high complexity and
non-transparency of deep learning methods, the development of explainability methods
is a non-trivial task [75]. Until today, explanation and interpretation of black-box AI
models, as deep learning based time series classification, remains a mostly unexplored
field posing a scientific challenge [37].

With the aim of gaining insights into the relation of observations and prediction
outcomes of black-box models, various explainability methods are proposed which
assign importance scores to each input feature [37, 42]. To the extend of our knowledge,
these importance scores are exclusively based on positional information, i.e. high scores
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Chapter 1 Introduction

are assigned to class-distinctive spatial patterns and regions of the feature space. We
hypothesize that this is due to the fact that explainability methods were originally
mostly developed for image or static data. For image data, assigning feature importance
scores to positional information (pixels) is a valid approach for explaining the prediction,
since in the image domain the label is often associated with specific input regions.
Consequently, heat maps based on these importance scores highlight the important
regions in the image, and hence are human-interpretable, as depicted in Figure 1.1.

(a) Neuschwanstein castle at dawn classi-
fied as ’castle’ with corresponding im-
portance heat map.

(b) Reflection of Zugspitze in Eibsee classi-
fied as ’dam’ (possibly due to reflection
in water) with corresponding impor-
tance heat map

Figure 1.1: Importance scores visualized as heat maps for image classification. The more
intense the red color the higher the importance of the respective pixel.

However, this approach of scoring based on positional information fails to provide
interpretability in some time series classification problems. To discuss the point, we
draw the readers’ attentions to the underlying data generation mechanism in the time
series domain. In this domain, the class label may depend on either a class-distinctive
positional pattern (a shapelet) or latent features of the time series, such as a dominant
frequency, state-space model parameters, or the overall trend of a non-stationary time
series. In case of shapelets, assigning importance scores to every input region (i.e. time
points) is justified, as the label correlates directly with positional information. In other
words, visualization through heat maps is directly interpretable. An example is depicted
in Figure 1.2(a), where the presence or absence of a unique pattern distinguishes two
classes. In case of the latter, however, positional scores do not immediately imply any
importance of the latent features, as the feature space and latent space are different.
Figure 1.2(b) outlines a toy example explanation in a scenario in which the label
depends on the difference in frequencies between the classes. Although a good guess
could lead to the correct interpretation of the label-making feature, in the presented
example the label could as well depend on a difference in amplitudes. Finally, we also
notice that the independence assumption between neighboring data points which is
made in the aforementioned approaches, neglects the time ordering of input features.
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1.2 Goals of the research

This leads to the inability to detect temporal dependencies [62]. As a conclusion, the
current approaches which have frequently been prescribed for time series may fall short
of explainability and interpretability in many scenarios.

(a) Scenario 1: Label based on the
presence of certain shape in the
time series

(b) Scenario 2: Label based on the
latent feature frequency

Figure 1.2: Toy explainability example showing the two label-making scenarios in the time
series domain. Areas of the time series with high importance scores are shaded in
grey.

Based on these observations we identify the need for an extension of current explain-
ability methods to latent feature explainability. For including temporal dependencies
into the explanation, we consider this step inevitable.

1.2 Goals of the research

Schlegel et al. [82] pose the question of validity of the application of XAI methods
designed for different fields to time series and propose a framework for evaluating and
verifying the use of feature attribution methods on time series problems [82]. Following
the same concern, we question the direct application of XAI techniques for explaining
black-box time series classifiers.

Throughout our research project, we focus on explanations for the predictions using
the highly popular Long Short Term Memory (LSTM) [39] and Convolutional Neural
Network (CNN) [59] classifiers. Comparisons of LSTM and CNN performances as well
as explainability on time series prediction tasks are presented in the literature: Suresh
et al. [96] evaluate the models performance on prediction of clinical interventions in
intensive care units, concluding that the performance of an LSTM is at least as high
as the performance of CNNs on the specified task. The authors measure performance
based on per-class area under the receiver operating characteristics curve (AUCs) and
the average of the per-class AUCs. Furthermore, the authors claim to have success-
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fully gained interpretability into both LSTMs and CNNs. Weytjens and Weerdt [100]
compare the performance of CNNs and LSTMs as well as of LSTMs with an attention
mechanism on the task of predicting the outcome of ongoing processes already early
on in the process. The authors find that there does not exist a significant difference in
performance of the models, thus recommending the use of CNNs due to their higher
computational efficiency. We aim to challenge and extend these results by conducting
experiments on synthetic data sets in which we assign class labels based on the presence
of specific shapes in the time series as well as on differences in the latent features. To
the extend of our knowledge this is the first study investigating explainability on latent
features in time series classification. For the scope of this thesis we focus on binary
classification of univariate time series.

We find that none of the evaluated explainability methods can provide reasonable
results when the label is based on a difference in the latent features. This strongly
supports our argument of the need for a latent feature importance detection method.
We identify the input-cell attention LSTM model [43] as a good candidate for moving
toward latent space explainability. Comparing to standalone LSTMs, this model
shows drastic improvement in the binary classification performance, measured by a
combination of multiple metrics [20] including AUROC and F1 score. We show that
in addition to the improved performance, the importance heat maps provided by the
attention mechanism are the most precise across all data sets and evaluated explanation
methods. Based on these observations we present an extension of this model to provide
a latent feature explainability framework. Our framework is evaluated on various
synthetic data sets.

1.3 Contributions
Our main contributions are as follows:

1. We design a study comparing the performance of commonly applied XAI tech-
niques on explaining classification results provided by different LSTM and CNN
architectures.

2. We evaluate and extend the results provided by former studies by conducting
experiments on synthetic data sets in which we assign class labels based on the
presence of specific shapelets in the time series as well as on differences in the
latent features.

3. We empirically show that common XAI methods fail to provide accurate expla-
nations when the class-label is based on the latent features of the time series,
identifying the need for a latent feature importance detection method.
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4. Finally, we present an extension for XAI methods, quantifying to what degree
the provided explanation should be interpreted in terms of the time dimension or
the latent space of the input time series.

1.4 Notations
Throughout this thesis X = (x1, ..., xT ) and Y = (y1, ..., yT ) ∈ RT represent time
series where each time step is denoted by xt or yt, t = 1, ..., T respectively. The
data set D consisting of such time series is described by D = {Xi}i=1,...,n. All time
series are assumed to be of length T ∈ N. The investigated classification models f
commonly consist of weight matrices W and biases b aside further non-linearities. In
the experiments and model development, the concept of Fourier series is employed.
The Fourier coefficients are presented by the amplitude A, frequency ω and phase shift
φ parameters. An initial offset of the Fourier series is described by a0. Importance
scores, or saliency scores, of feature xi are stated as s(xi). The complete saliency vector
of the whole time series X is refered to as SV (X) = (s(x1), ..., s(xT )).

1.5 Outline
The remainder of this thesis is organized as follows: Chapter 2 provides an overview
of the current state-of-the-art explainability methods for deep learning models with a
special focus on the applicability to time series classification. We provide a general
categorization of explainability approaches and outline the focus of this project. Then,
we explain various methods in detail. Subsequently, common deep learning methods
for time series classification are described. In Chapter 3 the experimental framework
is presented. First, the generation mechanism of the synthetic data sets employed in
the experiments is described. Then, a detailed overview of the investigated classifier-
explainability pairs as well as the implementation details is provided. Chapter 4
illustrates our new framework for latent feature saliency detection. After introducing
the general idea and intuition behind our framework, the calculations and the final
algorithm are outlined in detail. Furthermore, a global baseline approach to detecting
latent feature importance is presented. Results of the conducted experiments are
provided and discussed in Chapter 5. The final Chapter 6 concludes this thesis,
summarizing the major results and contribution as well as possible future work.
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Chapter 2

Literature review

Explainable artificial intelligence is a continuously growing field in the literature.
Before conducting experiments in Chapter 3, we present an overview of explainability
methods and commonly used deep learning methods for time series classification.
Section 2.1 introduces multiple explainability methods, focusing on ante-hoc techniques
in Section 2.1.1 and on post-hoc methods in Section 2.1.2. Subsequently, the need
of explainability for Long Short Term Memory networks and Convolutional Neural
Networks is discussed in Sections 2.2.1 and 2.2.3. The focus is put on explaining the
classification decision of LSTMs which poses a challenge, as Recurrent Neural Networks
(RNNs) suffer from the vanishing saliency problem described in Section 2.2.2.

2.1 Explainability methods
Deep learning models are highly complex. The model parameters are in general very
abstract and not directly interpretable [17]. Therefore, especially in the field of deep
learning, there is an immense need for techniques aiding to explain and interpret the
models’ decision processes.
Explainability methods can be classified by their scope or type. An explainability
method is called global if it provides results with regard to the overall decision-process
on the entire dataset. A possible application of such global explainability methods
in the banking sector could be the description of factors which influence the outcome
of a default risk prediction model for rating customers’ solvencies. On the other
hand, a method is said to be local if it provides explanation for the prediction of
a single observation [26, 37]. Continuing the previous example, to explain why one
certain customer was not provided with a loan based on the decision of the default risk
prediction model, a local explainability method need to be applied. For very complex
models such as deep neural networks, global methods are difficult to design [4, 81].
Thus, most proposals in the literature are restricted to local explanations.
In this project we focus on local explainability with a special emphasis on post-hoc
analysis described in Section 2.1.2. There exist multiple taxonomies of explainability
methods in the literature [9, 8, 67]. We suggest and structure this thesis based on the
taxonomy of explainability methods presented in Figure 2.1.
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Figure 2.1: Taxonomy of explainability methods

2.1.1 Ante-hoc explainability

Multiple statistical and deep learning prediction models are explainable by default or by
design [17]. These models are said to be ante-hoc explainable. Decision trees, decision
rules, k-nearest neighbors or linear models are examples for naturally explainable
machine learning models. In contrast, deep learning models are not naturally explainable
and have to be designed to provide ante-hoc explainability. For example including
attention mechanisms in the network architecture can provide explanation for prediction
outcomes (see chapter 2.1.1). In general, altering the architecture also changes the
decision process of the model. Therefore, including explainability designs into the
model might pose a trade-off between prediction accuracy and interpretability [6].
Different ways of achieving explainability within deep neural networks are proposed
in the literature: Self Explaining Neural Networks (SENN) generalize a simple linear
predictor to a complex network structure by retaining the properties explicitness,
faithfulness and stability [2]. A class of architectures called Explainable Deep Neural
Networks (xDNN) employs prototypes, e.g. data samples which represent local peaks
of the empirical data distribution, to create interpretable if-then rules that reflect
the internal dynamics of the network [6]. Attention-based deep learning models learn
to focus on important aspects of the given input, thus increase the performance and
provide insights into the decision process. The employed attention mechanisms [12] are
described in more detail in the following paragraph.
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2.1 Explainability methods

Attention mechanisms

First introduced in [12], attention mechanisms brought a revolution not only to ante-hoc
XAI methods, but also to model performance, especially in neural language processing.
Originally designed for recurrent encoder-decoder structures, attention mechanisms
take the hidden states of the encoder and decoder as inputs to provide a context
embedding of the hidden states based on the alignment of input and output at a certain
point in the sequence [50]. Through drawing parallels to the allocation of human visual
attention [76] for interpreting the mechanism, the attention mechanism can help to
understand the internal decision process of the network [102].
Let hj = fE(xt, ht−1) represent the encoder’s hidden state at time j, j = 1, ..., T for
input sequence X = (x1, ..., xT ), and si = fD(si−1, yi−1, ci) represent the hidden state
of decoder fD at time i, i = 1, ..., T , where y represents the target, fE and fD are
non-linear functions. For constructing a context vector ci, an alignment model relating
si−1 and hj is computed as

eij = a(si−1, hj),

where a is commonly chosen to be a feed-forward neural network. The network
parameters are jointly learned with the rest of the systems’ parameters. This constitutes
a soft-alignment allowing for backpropagation of the gradient. For each annotation hj ,
an attention weight

αij = exp(eij)∑T
k=1 exp(eik)

is assigned, representing the importance of hj for the calculation of the next state si
and target yi. The context vector ci is then calculated as

ci =
T∑
j=1

αijhj ,

which can be interpreted as the expected encoder hidden state over all possible align-
ments [12]. Lin et al. introduce self-attention mechanisms for sequential models in [63]
which produce an embedding of the hidden layer of a recurrent neural network. To
account for the possibility of multiple components composing the overall interpretation
of the input, various context vectors focusing on different parts of the input need to be
computed. The authors refer to the number of context vectors as attention hops. By
extracting the attention weights αij from the model, insights into the inner process of
the model can be obtained. Since attention mechanisms are mostly applied after an
encoder block, they provide interpretable importance weights for the hidden states [101].
Only few other works such as [43] propose to apply the mechanism at different points
in the model architecture as for example directly on the input sample.
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Brunner et al. [16] prove that in many applications, self-attention weights are not
identifiable. This is implied by the fact that an infinite set of attention weights might
yield the same prediction outcome. Since it is proven that not the whole attention
weight contains information affecting the model’s prediction, the authors propose to
focus on effective attention, the part of the attention weights which does influence the
prediction, to enhance model explainability which is followed up by [94].

Whether attention weights should be interpreted as explanation is an ongoing discussion.
Many are of the opinion that if attention can be seen as explanation depends on a faithful
assignment of importance scores to the input features [45, 101]. They conclude that
attention must not be interpreted as explanation, since in many cases attention weights
are uncorrelated with feature importance scores obtained from post-hoc explainability
methods, as in [45]. Nevertheless, this can be misleading, since explanations in
general are not mutually exclusive [101]. Bastings and Filippova [14] argue that
saliency methods constitute better explanations than attention mechanisms, since the
latter only provide importance weights for a representation of the input at a certain
point in the computation path of the prediction model, whereas saliency methods
assign importance scores based on the complete model. Various other extensions of
the attention mechanism to improve plausibility and faithfulness when interpreting
attention weights as explanation exist [21, 22, 56]. A different field of study focuses
on including theory from learning with rationales into XAI methods. Human domain
knowledge and annotations explaining a samples label are referred to as rationales [92].
Several studies on this supervised form of attention demonstrate the superiority of
attention mechanisms trained with human rationals in terms of explainability and
classification accuracy [7, 48, 92].
With our experiments, described in chapter 3, we hope to contribute to this discussion,
showing that in our specific scenario attention does provide explanation.

2.1.2 Post-hoc explainability

Given a trained black-box model, post-hoc explainability methods aim to describe
the reason for the prediction outcome of a specific sample. One class of post-hoc
explainability methods provides attribution scores, i.e. relevance scores, for each input
feature. These scores relate to the effect of the respective feature on the prediction.
Feature attribution values are often visualized in form of a heat map. Methods which
do not need access to model parameters are called model-agnostic. All other methods
which need information about the internals of the prediction model are refered to as
model-specific [78].
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2.1 Explainability methods

Model-specific feature attribution methods

Model-specific post-hoc explainability methods, also introduced in the literature as back-
propagation-based methods, propagate the gradient from the output of a prediction
model back to the input instance [20]. This type of feature attribution method is also
refered to as white-box approach, since access to the internals of the to-be-explained
model is necessary [73]. Gradient-based methods assume a direct relationship between
the magnitude of the gradient of the output with respect to a certain input feature
and the importance of the respective feature for the prediction. Since they only
require a forward and a backward pass through a model, these methods are especially
computationally efficient [75]. The attribution method Saliency [89] directly employs
gradients to generate saliency maps. Simonyan, Vedaldi, and Zisserman [89] define
saliency as part of a linear approximation to a prediction model f

f(X) ≈ sTX + b,

where b represents a bias and the saliency score s for feature xi of input X is calculated
as

s = ∂f

∂X

∣∣∣∣
xi

.

These scores are only precise in a very restricted neighborhood around the input [4].
Bastings and Filippova [14] and Ancona et al. [4] argue that raw gradients only express
sensitivity, whereas multiplying the gradient with the input [88] represents the marginal
effect of the respective input feature to the prediction outcome, thus expressing saliency.
Thus, saliency s of input feature xi for a prediction y = f(X) should be defined as

s(xi) = xi ·
∂f(X)
∂xi

.

This definition of saliency directly represents the contribution of each input feature to
the output of the model f [4]. Furthermore, Shrikumar et al. [88] note that multiplying
the gradient with the input significantly improves saliency maps for visualizing pixel-
wise importance scores in image classification tasks.
Multiple extensions and adaptions of the basic approaches of Saliency and Gradient
× Input have been proposed since. For reducing the noise in the gradients, DeCov-
Net [104], Guided Backpropagation [91] and SmoothGrad [90] introduce adaptions of
backpropagation rules [31].
Activation functions employed in the networks might challenge the usage of gradient-
based approaches. Rectified Linear Units (ReLUs) might lead to a zero gradient
although information might be conveyed through the activation function. Sigmoid
or tanh activations as commonly applied in RNNs, see section 2.2, produce near-
to-zero gradient for low and high inputs, therefore not reflecting a possible high
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importance of these inputs [88]. Deep-Lift [87] overcomes this problem by using
a neuron attribution-based difference-from-reverence approach to assign attribution
scores. The reference-based method of Integrated Gradients (IG) determines saliency
scores by calculating the path integral from a non-informative baseline input to the
respective input feature [95], thus tackling the problem of saturation of the gradient [14].
In comparison to most other attribution methods, IG fulfills the three desiderata of
Sensitivity, Implementation Invariance and Completeness. Sensitivity in an attribution
method is achieved if for every two inputs differing in one feature but assigned a
different class label by the prediction model, the respective feature is assigned an
importance value different from zero. Implementation invariance is achieved if for two
prediction models with equal prediction outcomes for all inputs, attribution methods
assign equal importance scores to the input. The completeness desideratum is satisfied
when the sum of all attribution values of an input equals the difference between the
prediction and the prediction of the baseline input [95].
Only applicable to CNNs (see section 2.2.3), Class Activation Mapping (CAM) [107]
and GradCAM [83] visualize attribution scores as a weighted sum of feature maps.
Guided Grad-CAM [83] provides high-resolution attribution scores combining Guided
Backpropagation [91] and GradCAM.

Relevance-based methods such as Layer-wise Relevance Propagation (LRP) [11] and
Deep Taylor Decomposition [68] determine final attribution scores by propagating
relevance scores from the output backward through the network via various designed
propagation rules. These methods thus differ from gradient-based feature attribution
methods in the way of decomposing the relevance scores at each layer. Montavon et al.
propose to propagate relevance via deep Taylor decomposition. Attribution scores are
enforced to be positive only. This implies the strong assumption that only evidences for
the predicted outcome are relevant, neglecting possible evidence against the prediction.
This is an oversimplifying assumption in many real-world applications [3]. LRP uses
the output probability for the target class as the initial relevance score. For propagating
the scores through different types of network layers, layer-specific propagation rules
are employed. The LRP approach suffers from high noise in the relevance scores and
a lack of class-discriminativeness [46]. As improvements, multiple extensions of the
method, as contrastive LRP [36], softmax gradient LRP [44] and selective LRP [46],
were proposed.

Model-agnostic feature attribution methods

In contrast to model-specific white-box methods, model-agnostic feature attribution
methods can be applied to any black-box classifier, even without physical access to
its internals [20, 73]. This fact makes them especially popular in settings where the
prediction model itself is not directly available. The understanding of feature impor-
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2.1 Explainability methods

tance in this class of attribution methods differs from the definition of importance in
the gradient-based or relevance-based methods. Importance is related to the change in
output when the respective feature is perturbed.

Many methods employing different perturbation approaches are proposed in the lit-
erature. The Occlusion technique [104] assigns saliency scores based on a drop in
the class probability when systematically occluding various input regions. The LIME
method [77] locally approximates a classifier by fitting an interpretable surrogate
model, e.g. a linear model, on randomly drawn samples in a neighborhood of the
input sample. Afterwards the original model is explained through suitable features of
the interpretable model. The Meaningful Perturbations method [30] combine aspects
from gradient-based methods as Saliency and Integrated Gradients together with the
underlying idea of local explanations from LIME to formulate explanations as meta
predictors. One disadvantage of LIME is that highly non-linear models might not be
closely approximated by a linear model. This might prevent the method from captur-
ing important input features [73]. Petsiuk, Das, and Saenko overcome this problem
by analysing the effect of random masking of input features on the outcome. Their
method Randomized Input Sampling for Explanation (RISE) [73], linearly combines
the binary masks used for occluding the input weighted by the output probabilities of
the respective masked input to generate the final importance scores.

Other methods are inspired by theorems from the field of game theory [24, 64, 93].
Among all, the application of the Shapley Value [85] has achieved great popularity. This
method determines the average marginal contribution of an input feature to the output.
Lundberg and Lee define a new class of additive feature importance measures in [66]
and prove that there exists a unique importance measure within this class i.e. the
Shapley value, which fulfills the desirable properties of local accuracy, consistency and
the ability to function in presence of missingness. Examples of explainability methods
belonging to this class are LIME, DeepLIFT and Layer-wise relevance propagation.
Based on their findings, Lundberg and Lee propose to measure feature-importance
as the Shapeley value of a conditional expectation function of the to-be-explained
prediction model. They introduce the SHAP values method [66]. For a more detailed
description of Shapley values and SHAP refer to Section 3.2.

Since for the perturbation methods, the prediction model must be re-run for every single
perturbation of the input sample, these methods are highly computationally expensive.
This states a challenging trade-off between better attribution through more perturba-
tions per sample (or more perturbed samples) and computation time [81]. Furthermore,
performance decreases in the number of input features [49]. This implies that the model-
agnostic feature attribution methods are more applicable in settings with fewer features.
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Multiple model-specific as well as the perturbation-based feature attribution methods
require the definition of an uninformative reference value. The performance of the
methods is known to highly depend on the choice of a suitable value. In the image
domain, this is mostly chosen to be an either completely white or black pixel. For
the perturbation of time series inputs, in a lot of cases the mean value of the input
sample is chosen. A different approach to perturbing a sample is adding noise to the
respective features [73]. Sundararajan, Taly, and Yan [95] justify and motivate the
use of a baseline input as a human-interpretable attribution allocation method via
counterfactual intuition. The idea of counterfactual explanations is discussed below.

Counterfactual explanations

Counterfactuals highlight to what extend the value of a certain input feature would
need to be modified to change the classification outcome. This explainable case-based
reasoning technique has become particular popular in recent years [54], since counter-
factual explanations are argued to be causally informative [53], easily interpretable by
humans [18, 47, 81] and legally compliant with the GDPR of the European Union [53].
As for the other classes of post-hoc explainability methods, only few counterfactual
methods are designed to explain the outcome of a time series classification problem [25,
38, 51]. Nevertheless, multiple counterfactual generation methods have been adapted
to or designed for the time series domain recently. Guidotti et al. propose to explain
the decision of a time series classifier by learning a shapelet-based decision tree to
construct counterfactual examples, highlighting shapes which must not be present in
the time series to receive a certain prediction [38]. Wang et al. extend an approach to
generate counterfactuals in latent space representation through auto-encoder models
from the image domain to time series classification [98]. Other approaches to the
construction of time series counterfactuals include time series tweaking [52], or mini-
mal perturbation towards a nearest unlike neighbor time series using a greedy search
algorithm [10]. Delaney, Greene, and Keane as well as Keane and Smyth identify
properties which a good counterfactual explanation for time series classification should
fulfill [25, 53]. Besides being as close as possible to the to-be-explained instance (to
achieve the property of proximity), informative counterfactual methods should also
give plausible explanations by generating counterfactuals within the data domain.
Furthermore, good counterfactuals need to provide sparse explanations, perturbing
only as few features as possible. In [25] a counterfactual generation method fulfilling
these properties is proposed. A so-called ’native guide’ is determined, which is a sample
from the training data set closest to the to-be-explained instance under the dynamic
time warping distance with a different class label. Afterwards, the sample is perturbed
towards the decision boundary.

As a summary, all of the explainability methods mentioned in this chapter provide
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feature-based explanations, where in the setting of univariate time series classification,
features correspond to time steps. None of these methods is designed for providing
reasonable explanations, when the classification is based on latent features of the time
series instead of certain time steps as stated in Chapter 1. Based on this finding,
we hypothesise the need for latent feature explainability methods for time series
classification.

2.2 Deep Learning methods for time series classification
Deep neural networks are widely used for time series classification and have proven
highly effective in many applications over the past years. Two families of neural networks
are commonly used for sequential tasks: Recurrent Neural Networks (RNNs) [79] and
Convolutional Neural Networks (CNNs) [59]. Recurrent Neural Networks are especially
designed to process sequential data. Since they are able to process much longer
sequences than other classes of neural networks while keeping some amount of memory,
RNNs have become particularly popular for time series classification and prediction
tasks. Convolutional Neural Networks, originally designed for the image domain, have
become highly popular for time series classification as well. Ismail Fawaz et al. [40]
find, that due to their robustness and computational efficiency, CNNs are the most
commonly employed deep learning models for time series classification tasks.
In the following section Recurrent Neural Networks, especially the Long Short Term
Memory (LSTM) model, and Convolutional Neural Networks are briefly summarized.
We then continue with describing the explainability difficulties for these models.

2.2.1 Recurrent Neural Networks and Long Short Term Memory

Recurrent Neural Networks leverage the learned dependencies between data points in the
learning process of the model by introducing feed-backs into the network structure [34].
This class of networks defines recurrent functions rf to map an input xt ∈ Rn at time t
and hidden state ht−1 ∈ Rm from the previous iteration to an updated hidden state

ht = rf(xt, ht−1)

[86]. When gradients are propagated back through multiple layers, they tend to either
vanish or explode, since weights are exponentially decreasing over the iterations. Thus,
long-term dependencies will naturally be assigned very small weights [34]. To overcome
the vanishing gradient problem, the cell structure of the Long Short Term Memory
system (LSTM) was designed [39], providing a constant error flow. For LSTMs the
recurrent function rf changes to

ht = rf(ht−1, ct−1, xt),
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where ct−1 defines a cell state calculated as

ct = ft � ct−1 + it � tanhWxcxt +Whcht−1,

with input gate it, forget gate ft and output gate ot controlling the gradient flow by

it = σ(Wxixt +Whi
ht−1),

ft = σ(Wxf
xt +Whf

ht−1),
ot = σ(Wxoxt +Whoht−1),

where σ represents the sigmoid function and � the element-wise multiplication. All
weight matrices Wx ∈ Rm×n and Wh ∈ Rm×m are learned during training of the
network. The gating structure allows the LSTM to decide how much weight to put
on the current input through it, how much information from previous steps to delete
through ft and how much the current input should impact the output at step t through
ot [43]. The final equation of the recurrent function then assigns a value to the hidden
state ht as

ht = ot � tanh ct.

When the gradient of the output yT with respect to the input xt

∂yT
∂xt

= ∂yT
∂hT

(
t+1∏
i=T

∂hi
∂hi−1

)∂ht
∂xt

is propagated back through the network, the vanishing gradient problem might reduce
the partial derivatives of the hidden states to

∂ht
∂ht−1

≈ ot � (1− tanh2(ct))ft.

Thus, the forget gate ft can prevent the gradients from vanishing [43].

Although LSTMs are widely used for time series prediction or classification tasks, it is
known that these models still have difficulties learning long-term dependencies [50]. A
proposed solution for the memory limitation of LSTMs is the incorporation of attention
mechanisms into the network architecture. In most of the proposed architectures in
the literature, a self-attention mechanism is applied to the hidden states of an LSTM
model. The authors of [43] propose to apply a self-attention mechanism directly on the
input before feeding the context vector as an input to the LSTM cell structure. For
more details see Section 2.2.2.
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The feedback loop makes RNNs extremely non-linear, keeping humans from understand-
ing the complex internal decision process. For increasing the performance of the model,
in many cases multiple networks are stacked on top of each other, using the hidden
states of one recurrent block as an input to the next RNN, which makes explanation of
the complete architecture nearly impossible. Explainability techniques as described
in Section 2.1 provide a first step towards understanding and interpreting the models.
Nevertheless, explainability methods taking into account the temporal dependencies
in time series data which can be applied to RNNs are almost non-existent. Thus,
there is a great need for an extension of commonly employed explanation techniques
to incorporate importance information of the temporal dynamics represented by the
latent features of a time series.

2.2.2 Vanishing saliency problem in RNNs
Recurrent neural networks suffer from the vanishing gradient problem. As explained
in Section 2.2.1, the cell structure of the LSTM including the gating mechanisms
was designed to diminish this problem. Nevertheless, the authors in [43] show that
the gating mechanisms cannot sufficiently reduce the vanishing gradient problem to
allow gradient-based explainability methods to correctly identify important intervals at
earlier time steps. The amount of reduction in the gradient is controlled by the forget
gate, as depicted in Section 2.2.1. For early time steps, the gradient-reducing effect is
multiplied many times, leading to a diminishing gradient and thus decreasing relevance
of these time steps [43]. This poses a great challenge to the explainability of RNNs. In
the following subsection, two approaches addressing this problem are described.

Input cell attention

As an approach to reduce the vanishing saliency problem in LSTMs, the authors in [43]
propose a network extension by modifying the input of the LSTM cell. A self-attention
mechanism At consisting of a two layer unbiased feed-forward neural network, as
proposed in [63], is used to produce a fixed-size weighted embedding vector Mt of the
input Xt ∈ Rt for every time step t

Mt = AtXt

where
At = softmax(W2 tanh(W1X

T
t )).

In this formulation, the softmax function is applied to every row of the raw attention
matrix separately. By passing the vector Mt as an input to the LSTM cell, the network
is forced to learn the weight matrices W1 and W2 such that the final attention weights
i.e. the entries of the matrix At, are representing the importance of the respective time
steps t.
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Saliency guided training

A different approach to diminishing the vanishing saliency problem is introduced in [41].
Designed to reduce noise in gradients, the training procedure improves the explanations
from gradient-based saliency methods. Following the rationale that high gradients
of the output with respect to the input represent high importance of the respective
input feature, time steps with low respective gradients are iteratively masked by a
predefined baseline value. The network is trained to jointly minimize the cross entropy
loss function and the empirical point-wise Kullback-Leibler divergence between the
outputs corresponding to the original input and the masked input by a gradient-based
optimizer such as Adam [55]. By producing sparse and less noisy gradients, the training
procedure also reduces the vanishing saliency problem.

2.2.3 Convolutional Neural Networks

Convolutional neural networks are most commonly applied in the computer vision and
signal processing domains. One reason for the great performance on various tasks as
object recognition, face verification and audio classification is the natural property of
CNNs to learn highly complex feature representations [23]. One-dimensional CNNs
have become popular for time series classification in the last years. By convolving over
the time axis, a convolutional layer can detect local patterns, as distinctive shapes,
in the time series. More complex patterns can be learned through various stacked
layers [23]. The one-dimensional convolution can also be interpreted as a non-linear
transformation of the input time series [40].
Convolutional layers can be subdivided into three subsequent stages. The outputs
of the first stage, consisting of the convolution of the input, are fed into non-linear
activation function. In the last stage, the pooling stage, a summary statistic of outputs
in a certain neighborhood is calculated. The pooling operation is used to make the layer
output more invariant towards minor shifts in the input. Local translation invariant
networks can be helpful in tasks in which information about the presence of a feature
is more important than information about its precise location [34].
Let γ represent a convolutional filter of length l + 1, and a and b be a non-linear
activation function and bias respectively. Without loss of generality l is considered
to be an even number. The result C of a convolution over the univariate time series
X = (x1, ...xT ) is formulated as

Ct = a(γ ∗X[t− l
2 :t+ l

2 ](t) + b) ∀t ∈ [1, T ],

where ∗ represents the convolution operation and X[a,b] = (xa, ..., xb). Due to the
convolution of the whole input with the same shared filter γ, these learned filters are
time-invariant [40]. Furthermore, the sparsity in weights induced by the filter weight
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sharing results in a much higher computational efficiency of CNNs compared to RNNs.

For time series prediction and classification, many extensions of convolutional neural
networks are proposed. Wang, Yan, and Oates propose a Fully Convolutional Network
(FCN) as a baseline approach and starting point for research on time series classifi-
cation [99]. Although the architecture is deliberately kept simple, by incorporating
only one convolutional layer and batch-normalization as well as a ReLU activation
function (which prevents heavy preprocessing or data engineering), the network achieves
performance comparable with more complex counterparts. As an extension Karim
et al. [50] propose a concatenation of an LSTM with a FCN (LSTM-FCN) as well as an
Attention-LSTM-FCN, which achieve significantly better performance than the FCN
on its own. To avoid loss of information through feature extraction in a separate pre-
processing step, the Multi-scale Convolutional Neural Network (MCNN) [23] combines
classification and feature extraction in one model. By employing a smoothing and a
down-sampling convolutional operation in addition to an identity mapping, it exploits
the property of CNNs to naturally learn feature representations in time domain as well
as frequency domain. Other approaches include the Time Le-Net [60], Time-CNN [105]
and Temporal Convolutional Network [13], where the latter is described in more detail
in the next paragraph. Especially designed for multivariate time series classification, the
Multi-Channels Deep Convolutional Network (MC-DCNN) [106] applies convolutional
filters to each univariate time series separately, before combining the learned feature
representations in the final classification layer.

Although activation maps of convolutional layers can be employed to provide insights
into the internal decision process of the models, these maps only focus on positional
information. Hence, the bias of common explainability methods of neglecting non-
positional information when assigning importance scores to input features, can also
not be mitigated in CNNs.

Temporal Convolutional Network

A temporal convolutional network (TCN), as introduced in [13], aims to integrate
benefits of recurrent neural networks in the sequential domain into a convolutional
network structure. Based on the structure of a fully convolutional neural network [65]
with fixed hidden layer size equal the length of the input and zero-padding of size
(convolutional filter − 1), the network provides a mapping from an arbitrary sized
input to an output with the same length, in the fashion of RNNs. The complete
fully convolutional network can be interpreted as a non-linear filter rather than an
arbitrary non-linear function. In many scenarios in the sequential domain, a leakage of
future information to the past is undesirable, a property which standard convolutional
neural networks cannot guarantee. As a solution [13] introduces causal convolutions to
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the network, restricting the convolution to the current and past time steps only. For
achieving a history size exponentially increasing with the depth of the network, dilated
convolutions are employed at every layer, introducing a step length of dilation factor d
between all neighbouring cells in the respective filter. The authors argue that, due to
the exponentially increasing receptive field, TCN inherits longer memory compared to
RNN architectures.
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Experimental framework

The experiments were conducted in two phases. First, the performance of multiple
local explainability methods in combination with each three types of LSTM and CNN
classification models was evaluated on various synthetic data sets. Afterwards, the
best-performing (classifier, explainability method) combination was extended to provide
an importance score for the latent features of the instance of interest.
The generation mechanisms of the employed data sets are described in Section 3.1. In
Section 3.2 the classifiers and explainability methods which were tested are described.
Section 3.3 presents details about the implementation of the methods.

3.1 Data generation

In order to develop a saliency method for the latent features of a time series in a
supervised manner, we generate multiple synthetic data sets according to a number of
simulation scenarios. We consider two scenarios where the time series labels depend
on either the presence of a specific shape in the series or differences in the underlying
latent features as stated in Chapter 1. By comparing the explainability methods on
our generated data sets of these scenarios, we argue in Chapter 5 that explainability
methods fail in the second scenario. Furthermore, we extend the experiments presented
in [41], and investigate the reduction of the vanishing saliency problem in more realistic
data sets by allowing the temporal position of the label-informative shape to vary
among samples.

For the scope of this project we restrict the analysis to discrete time stationary periodic
signals modeled by a Fourier series. Since, by the Fourier theorem, any periodic time
series can be uniquely represented as a Fourier series, we consider the generation of
Fourier series as a valid approach for our analysis and the development of a latent
feature saliency method. Thus, we can assume that for a time series X each time step
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xt, t = 1, ..., T can be represented as

xt = a0 +
∞∑
n=1

an cos(ωnt) +
∞∑
n=1

bn sin(ωnt)

= a0 +
∞∑
n=1

An cos(ωnt+ φn)

= a0 +
∞∑
n=1

An sin(ωnt+ φn + π

2 ).

Let ñ represent the number of amplitudes present in the series, i.e. ∀i > ñ, Ai = 0.
For the sake of simplicity, only centered stationary periodic time series are considered
in the data generation process, i.e. a0 = 0. Then the value at every time step t is
calculated as

xt =
ñ∑
i=1

Ai sin(ωit+ φi + π

2 ).

We refer to the notions amplitude A, frequency ω, phase shift φ as concepts. The
separate Fourier coefficients Ai, ωi, φi for i = 1, ..., T̃ are refered to as latent features.
The latent features frequency ωi and phase shift φi are each sampled from a uniform
distribution. The sampling intervals are chosen with respect to the specific intention in
the experiment design. To simulate the amplitude parameters Ai, a dominant amplitude
A1 is sampled. The next amplitudes are calculated considering an exponential decay
with a fixed rate dec:

Ai = A1 exp(−i · dec), i = 1, ..., ñ.

This makes the first frequency i.e. ω1 to be the dominant frequency of the Fourier
series. Throughout the experiments, all time series were generated with an equal length
of 300 time steps. i.e. T = 300. A detailed overview of the parameters chosen for the
simulation can be found in table B.2 in appendix B.

For assigning class labels to the time series samples, we consider the following two
scenarios.

Scenario 1: Label based on the presence of a shapelet
Analogously to salient region detection in image classification, common explainability
methods highlight time steps identified as important for the classification outcome.
In general, saliency is defined as the effect each input feature has on the prediction
outcome, measured in its simplest form as the gradient of the output with respect
to each input feature multiplied by the input feature itself. In image classification,
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input features correspond to pixels of the image, whereas in the time series setting,
input features correspond to time steps. The saliency assignment of each input feature
follows the same logic for both settings. If a certain shape occurring in the time
series is responsible for the class label, these location-based explainability methods
are expected to be able to correctly identify the time interval in which the shape is
occurring. Shapelets [103] represent sub-sequences of time series which maximally
explain the split of the data set into two classes, in the sense that the difference of
entropy before and after splitting is maximal. The entropy of a discrete random variable
U with probability distribution PU and alphabet U is defined as

H(U) = −
∑
u∈U

PU (u)log(PU (u)),

where 0ln(0) := 0 [35]. In application to a time series data set D consisting of two
classes A and B, the empirical entropy of D is defined as

H(D) = −p(A)log(p(A))− p(B)log(p(B))

where p(A) and p(B) represent the proportions of class A and class B in the data
set respectively [103]. In a binary classification setting, the data set D is split into
two subsets D0 and D1, each subset consisting of samples predicted as belonging to
the same class. Finding a shapelet can be interpreted as finding an optimal splitting
strategy for D into D0 and D1. The splitting rule is given by a distance measure d
between a specific sub-sequence, also refered to as shapelet candidate Sh and any
other sub-sequence of samples in D as well as a splitting threshold dth. The learned
parameters maximize the difference in entropy of D and the the combined weighted
entropy of D0Sh

and D1Sh
, such that for all sub-sequences X0,i ∈ D0Sh

d(X0,i, Sh) < dth
and for all sub-sequences X1,i ∈ D1Sh

d(X1,i, Sh) ≥ dth. A shapelet then defines the
sub-sequence of a sample in D, such that

H(D)− (f(D0shapelet)D0shapelet + f(D1shapelet)D1shapelet)
≥H(D)− (p(D0Sh

)D0Sh
+ p(D1Sh

)D1Sh
)

for all other sub-sequences Sh in D, where p(.) represents the fraction of samples of D
assigned to the respective subset [103].

For assigning shape-based labels to the time series, a shapelet is inserted at a random
or fixed position into all time series X ∈ D belonging to one class. The shapelet is
a second simulated Fourier series of length l ≤ T , where l = window-ratio · T for a
chosen window ratio. We define the sampling intervals for the latent features of the
shapelet to be non-intersecting with the sampling intervals of the latent features of the
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original time series X. The resulting shapelet replaces the original time series in the
interval [j, j + l], where

j ∼ U(1, T − l).

Scenario 2: Label based on differences in the latent features
Following the investigation of the effectiveness of explainability methods for latent
features, we introduce a second simulation scenario where the labels depend on a dif-
ference in the sampling distribution of latent features of the time series. This scenario
highlights the main focus of this project, and represents our novel view of explainability
methods for time series. Similar to the first scenario, the time series are sampled as
discretized Fourier series with latent variables ω,A and φ.

Based on the data generation method described above, we design ten different mech-
anisms. In four experiments, the label is based on a shapelet at random and fixed
positions in the start, middle and end of the time series respectively. Each two data
sets are designed such that the label is based on one of the latent Fourier concepts.
For the scope of this thesis we design the data sets to only include one label-making
feature at a time. An overview of the generated data sets is provided in table 3.1.
Details about the parameters of the generated data sets and the label generation per
experiment can be found in tables B.1 and B.2 in appendix B.

3.2 Compared classifiers and explainability methods
In Chapter 2, two of the most common families of time series classifiers as well as
multiple explainability methods were introduced. During this project, explainability
on the following six classifiers was investigated:

• Long Short Term Memory (LSTM):
The probably most renown deep learning method for time series forecasting
and classification is included in the analysis as a baseline classifier. Since the
classification performance of this method is not expected to surpass the LSTM-
based classifiers listed below, we are mainly interested in the comparison to the
standard one-dimensional CNN.

• LSTM trained via Saliency Guided Training (LSTM + SGT):
Ismail et al. prove that the LSTM as well as other recurrent neural networks
suffer from the vanishing saliency problem. One possible approach to addressing
this problem is the saliency guided training procedure. In [41] the method is
only evaluated on image data treated as multivariate time series, which does
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Experiment Label Idea

Due to the vanishing saliency problem and the
LSTMs’ difficulties learning long-term dependencies,

3, 4, 5 & 6 Shapelet we expect the classifiers and explainability methods to
achieve different performances depending on the
position of the shapelet.
The experiments differ only in the number of sines
employed for sampling the Fourier series. We aim to

101 & 102 Frequency test for performance differences of the classifiers and
explainability methods on very simple and more
complex Fourier series.
As for the frequency experiments, these data sets

103 & 104 Phase shift only differ in the number of sines. The idea behind
the generation is the same as above

105 & 106 Amplitude Following the same idea as in the experiments above,
the data sets only differ in the number of sines.

Table 3.1: Description of data sets.

not represent real world time series data. We intend to investigate the saliency
and classification performance improvement through this interpretable training
procedure on more realistic univariate data sets.

• Input-cell attention LSTM (AttentionLSTM):
A second way of addressing the vanishing saliency problem is the combination
of an input-cell attention mechanism with the recurrent neural network. We
intent to investigate the difference in classification and saliency performance
between the two solutions proposed in [41] and [43]. By conducting post-hoc
explainability experiments on this classifier, we further hope to contribute to the
ongoing discussion of whether attention is explanation.

• One-dimensional Convolutional Neural Network (CNN):
The counterpart to the standard LSTM from the class of convolutional neural
networks is evaluated against the generic LSTM regarding classification perfor-
mance and explainability. It further acts as a baseline for the other investigated
convolutional architectures.

• One-dimensional CNN trained via Saliency Guided Training (CNN + SGT):
The saliency guided training procedure was introduced to provide less noisy
gradients and thus improve the saliency performance of gradient-based explain-
ability methods. The interest in including a one-dimensional convolutional neural
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network trained via saliency guided training into the analysis lies in the evaluation
of the of saliency performance on classifiers different from RNNs employing this
procedure.

• Temporal Convolutional Network (TCN):
The temporal convolutional network was designed to inherit properties from
CNNs and RNNs beneficial for sequence modeling. In [13] the authors show that
TCNs generally outperform RNNs on sequence modeling tasks and conclude that
convolutional neural networks, especially the TCN, should be considered the
leading deep network architecture for sequential tasks. We explore the difference
in performance of explainability methods on a generic CNN architecture and a
temporal convolutional network architecture.

Descriptions of the classifiers were provided in Section 2.2. Architecture details are
described in table B.3 in appendix B.
Since ante-hoc explainability methods are integrated in the network itself and thus
cannot easily be compared across different network architectures, we focus on post-hoc
explainability methods in this project. A single ante-hoc method, the input-cell-
attention mechanism, described in Section 2.2.2, is included in the analysis. Specifically,
each one gradient based and perturbation based feature attribution method as well
as one counterfactual explanation method is chosen to represent different classes of
post-hoc explainability methods in the comparison:

• Integrated Gradients (IG):
The gradient-based attribution method Integrated Gradients, introduced in Sec-
tion 2.1.2, satisfies the three desiderata of sensitivity, implementation invariance
and completeness, as outlined in Section 2.1.2. The Integrated Gradient of an
input x defined as

IGi(x) := (xi − x′i)×
∫ 1

0

∂f(x′ + α× (x− x′))
∂xi

dα (3.1)

for input dimension i, where f : Rn → [0, 1] represents a deep neural network
and x, x′ ∈ Rn represent input and baseline inputs respectively. By fulfilling the
stated desiderata, IG is a superior attribution method compared to many other
gradient-based methods, while remaining relatively simple and computationally
effective, making it our gradient-based attribution method of choice.

• Kernel SHapley Additive exPlanation Values (SHAP):
Shapley values of the conditional expectation function of the model of interest
have been shown to fulfill multiple desirable properties. Since exact computation
of these values is challenging, the authors propose an alternative method by
combining linear LIME (see section 2.1.2) and the computation of Shapley values
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to approximate the Shapley values of the conditional expectation function. Let f
represent a prediction model and F the set of all features. The Shapley value vi
for feature xi of input X is defined as

vxi(f,X) =
∑

S⊆F\{xi}

|S|!(|F | − |S| − 1)!
|F |! [fS∪{xi}(xS∪{xi})− fS(xS)].

Linear LIME optimizes the loss function L(f, g, πx′) over all linear explanation
models g for f using simplified inputs x′, which are mapped to the original inputs
by a mapping function hx(x′) = x. Let M represent the number of simplified
input features. A linear surrogate model g to explain the model f is defined as a
mapping of binary variables z′ ∈ {0, 1}M of the form

g(z′) = v0 +
M∑
i=1

viz
′
i

for vi ∈ R. The local explainability method linear LIME ensures that g(z′) ≈
f(hx(z′)) for all binary variables z′ ≈ x′. Let B be the set of non-zero indices of
the binary simplified input z′ and hx(z′) = zB the simplified input mapping. By
approximating f(zB) through

fx(z′) = f(hx(z′)) := E[f(z)|zB]

and defining a loss function L for the linear approximation g of prediction model
f as

L(f, g, π) =
∑

z′∈{0,1}M

[f(h−1
x (z′))− g(z′)]2π(z′),

with Shapley weighting kernel

π(z′) = (M − 1)(M
|z′|
)
|z′|(M − |z′|)

,

where |z′| describes the number of non-zero values in z′, linear LIME minimizes
the loss function over all possible linear surrogate models g, calculating the
Shapely values via a weighted linear regression.

We employ the presented perturbation-based explainability technique due to its
computational superiority compared to many other model-agnostic approaches
and its popularity in the literature.
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Chapter 3 Experimental framework

• Native Guide (NG):
The counterfactual explanation method described in Section 2.1.2, finds the
nearest unlike neighbor (NUN) of the time series instance of interest in the
training data set, which afterwards is perturbed towards the decision boundary.
A NUN is any time series from the database classified as a different class than
the instance of interest, which minimizes the distance to the to-be-explained
sample based on some pre-defined distance measure. Commonly this measure
is chosen to be the Dynamic Time Warping (DTW) distance. Dynamic Time
Warping aims to find an optimal alignment of two time series X,Y of lengths
LX , LY in the temporal domain which minimizes the accumulated cost

Di,j = f(xi, yj) + min{Di,j−1, Di−1,j , Di−1,j−1},

where i = 1, ..., LX , j = 1, ..., LY and initialization D0,0 = 0, Di,j =∞ otherwise.
The overall cost DLX ,LY

is commonly chosen to represent the DTW dissimilarity
measure [84]. We employ two different variations for perturbing theNUN towards
the to-be-explained instance. First, the saliency output vectors of the two above
mentioned feature attribution methods Kernel SHAP and Integrated Gradients
are used to perturb only important time steps providing sparse explanations.
In the second approach, the complete time series is perturbed using weighted
dynamic barycenter averaging [32], a special form of DTW barycenter averaging
(DBA) [72]. Let D = {(Y1, w1), ..., (Yn, wn)} be a data set of time series Yi in a
dynamic time warping distance induced space Z with corresponding weights wi,
i = 1, ..., n. Then, the weighted average time series Ȳ is calculated as

arg min
Ȳ ∈Z

n∑
i=1

wiDTW
2(Ȳ , Yi).

The function above can be minimized with the help of DBA in which a starting
average Ȳ is iteratively adapted using an expectation-maximization approach.
For a detailed description of the DBA and weighted dynamic barycenter averaging
algorithm, refer to [32, 72].
The comparatively simple yet intuitive counterfactual generation method of
Native Guide especially suites our purposes, since it allows to combine counter-
factual explanations with the other above mentioned post-hoc feature attribution
methods, additionally aiding in interpreting the feature attribution results.

3.3 Implementation details
Since the main goal of this project was not to analyse the classification performance of
different network architectures, but to investigate the performance of explainability
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methods when the class labels depend on latent input features rather than positional
information, all classifiers only consisted of one-layer networks. Furthermore, we do
not employ dropout or any other form of additional regularization. By keeping the
architecture simple, we intend to objectively evaluate and compare the explainability
methods for certain architectures without the influence of optional variations, preventing
overfitting or boosting the network performance. A detailed description of the network
architectures can be found in table B.3 in appendix B.
All algorithms were implemented in the Python programming language. The classifiers
were implemented using the deep learning library PyTorch [71] with the help of the
wrapper PyTorch Lightning [29]. The authors of [43] provide a publicly available
implementation of the input-cell-attention module which we adapted. Hyperparameter
optimization was performed through the library Optuna [1]. For the feature attribution
techniques, the implementations from the PyTorch based model interpretability library
Captum [57] were employed. The other investigated classifiers and explainability
methods had to be manually implemented1.

1All rights for the code of this thesis belong to the Department Reasoned AI Decisions of the
Fraunhofer Institute of Cognitive Systems.
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Chapter 4

Latent feature saliency
This chapter introduces a new framework for extending current explainability methods
providing timestep-wise importance scores to the latent space of a time series. First,
the general idea and the intuition behind the approach is presented. Afterwards,
the derivation of the performed calculation is stated. In Section 4.3 we present a
straightforward statistical baseline approach to global explanation of latent feature
saliency.

4.1 Description of the proposed method
Our goal is to develop an extension of those explainability methods which assign
importance scores to input time steps. We aim to define a procedure that maps the
time-step-wise scores to one overall importance score for the latent Fourier concepts
frequency, amplitude and phase shift. The general importance score for the Fourier
concepts is motivated by easy interpretability and wide use of Fourier series modelling
in time series analysis. We define the mapping such that a high value of the map
indicates a high likelihood that the latent Fourier concepts were responsible for the
class label. Thus, a high score expresses relative importance of the Fourier concepts.
On the other hand, low values signify either the importance of some latent time series
features other than the Fourier concepts or the presence of a certain shape in the time
series which was responsible for the predicted class label. We formalize importance
of the latent Fourier concepts as follows: If we observe a significant discrepancy in
distribution of at least one of the latent concepts between the classes, we consider
the Fourier concepts to be important. We hypothesize that information about this
distribution shift is more valuable in real-world applications than information about
single latent features considered important by the method. In case the distributions for
the different classes are non-overlapping, importance scores for single latent features
could be informative as well. Nevertheless, for universal applicability we decide to only
focus on a unified overall importance score for all latent concepts.

We assume that the underlying time series generation processes are continuous, periodic
and stationary. By the Fourier theorem a trajectory from such processes can be
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represented by means of its Fourier series [15] of the form X = (x1, ..., xT ), where for
every t = 1, ..., T

xt = a0 +
∞∑
n=1

An cos(ωnt+ φn).

We note that in the experiment setting we consider discrete observations from these
trajectories for time t = 1, ..., T . As a result, the set of latent features of the time series
consist of frequencies ωn, amplitudes An and phase-shifts φn, n = 1, ...,∞. From a
discrete realization of the time series we can numerically recover the latent features
for n = 1, ..., T̃ through Fast Fourier Transform (FFT), where T̃ = T

2 for T even or
T̃ = T−1

2 for T odd.
Timestep-wise explainability methods constitute a mapping from each input feature to
an importance score. We define a function I which maps the latent features to the
final timestep-wise importance scores through i) resampling the time series X by a
Fourier transform and ii) applying the explanation function to the resampled input.
Therefore, the problem of determining a mapping from importance scores provided by
some explainability method to a latent feature importance score can be redefined as an
explainability problem of function I.

Figure 4.1: Outline of function I.

As stated in Chapter 2.1, several methods exist for assigning input importance scores.
In our setting we face a slightly different explainability problem: Instead of assigning
saliency scores to multiple input features regarding the prediction of one single outcome,
we are interested in quantifying the overall importance of a function of all input features
(in our case, the Fourier transform) with regard to multiple related outputs in one
score p. Thus it is not possible to directly apply common explainability methods. The
input to our saliency method is a vector of T time-step-wise importance scores, which
again constitutes a time series. Applying a standard saliency method as Gradient ×
Input to this time series with respect to each Fourier coefficient results in one saliency
vector per latent feature. We hypothesize that if the original explanation is related
to the latent space of a time series, then the importance vector should be highly
similar to the saliency vector of the latent concepts, in the sense that the distance
between the original importance vector and the saliency vectors of function I with
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respect to one latent concept at a time should be small. Quantifying this distance is a
non-trivial task. Various distance and similarity measures are commonly applied in
the time series domain [69, 84]. Nevertheless, all of the existing measures suffer from
different types of limitations, such that none of the measures on its own is suitable
to our problem. One example of a commonly employed similarity measure for time
series is the Pearson correlation coefficient. This measure assigns high values to series
sharing the same pattern in time. If two highly similar signals are slightly shifted in
the time dimension, the measure will fail to assign a high similarity score. Since we are
interested in mapping the explanations of one single time series sample at a time to
the latent space, it is not possible to perform metric learning or to learn a combination
of various difference measures to overcome their respective limitations. Therefore, we
need to quantify the distance between the two vectors in a different way.
In a first step, the original importance score vector and all saliency vectors of the
latent concepts are transformed by a softmax function. Applying the softmax function
to a vector can be interpreted as assigning an importance probability to each entry.
From a game-theoretic point of view, the output of the softmax function represents a
players mixed strategy for the game [33]. A mixed strategy assigns a probability of
being played to each of a players options. Anderson, Goeree, and Holt [5] derive the
softmax-based logit equilibrium which accounts for random perturbation of the payoff
resulting from a players mixed strategy. We hypothesize that this property permits
the detection of a possible effect of the phase shift. The problem thus breaks down to
comparing the similarity of mixed strategies of two players, where the game is given
by the importance allocation task. To investigate the similarity of the strategies, we
employ the euclidean distance.

In this thesis an extension of the input-cell attention LSTM is developed. The de-
cision for providing an extension of the adapted LSTM classifier with the attention
mechanism as explainability method is based on the convincing performance of the
classifier-explainability pair. Results supporting this statement are presented in Sec-
tion 5. Nevertheless, the provided approach is only a special case. Our framework can
easily be adapted to other explainability methods which provide importance scores
for every input feature. An overview of our latent saliency framework is provided in
Figure 4.2.

4.2 Derivation of calculations

The attention mechanism in [43] represents a multidimensional importance embedding
of the input time series. The attention matrix for input X = (x1, ..., xT ) is calculated
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Figure 4.2: Outline of the latent feature explainability framework.

as
A = softmax(W2 tanh(W1X

T )),

where W1 and W2 are weight matrices with dimension da ×N and r × da respectively.
The number of time steps the network attends to is represented by r, refered to as
attention hops, da is a hyper-parameter. In the case of univariate time series classifica-
tion where N = 1, the attention matrix has the dimension r × T .

For mapping the time-step-wise attention scores to a latent feature-based importance
score, we apply a post-hoc saliency method on the raw attention matrix: calculating the
gradient with respect to the latent features multiplied by the feature itself. Although
the gradient is often applied as a saliency method on its own, it does not measure
importance of an input directly, but the sensitivity of the output with respect to a
change in the input. The multiplication of the gradient with the input results in the
marginal effect of the input on the outcome, hence representing the importance.

4.2.1 Gradient calculation

For every i = 1, ..., r and t = 1, ..., T the entry ãi,t in the raw attention matrix before
the softmax is applied is calculated as

ãi,t =
da∑
k=1

w2i,k
tanh(w1k

[
T̃∑
n=1

An cos(wnt+ φn)])

=
da∑
k=1

w2i,k
tanh(w1k

x̂t).

Let l represent Fourier coefficient. The gradient from entry ãi,t in the raw attention
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matrix with respect to l can be calculated as

∂ãi,t
∂l

= ∂ãi,t
∂x̂t

∂x̂t
∂l

where ∂ãi,t
∂x̂t

=
da∑
k=1

w2i,k
w1k

(1− tanh2(w1k
x̂t)) =: ∆i,t.

The gradients of the the raw attention values with respect to the latent features An,
ωn, φn for all n = 1, .., T̃ respectively are

∂ãi,t
∂An

= ∆i,t · cos(ωnt+ φn),

∂ãi,t
∂ωn

= ∆i,t ·Ant · (− sin(ωnt+ φn)),

∂ãi,t
∂φn

= ∆i,t ·An · (− sin(ωnt+ φn)).

For the saliency values sãi,t it follows

sãi,t(An) = ∆i,t ·An · cos(ωnt+ φn),
sãi,t(ωn) = ∆i,t ·Ant · ωn · (− sin(ωnt+ φn)),
sãi,t(φn) = ∆i,t ·An · φn · (− sin(ωnt+ φn)).

Since saliency scores are calculated for every latent feature at every time point and for
every attention embedding i ≤ r, the computation results in 3T̃ matrices of dimension
r×T , where each matrix corresponds to the saliency values with respect to one specific
latent feature. We refer to these matrices as saliency matrix S(ln) for l ∈ {A,ω, φ}
and n = 1, ..., T̃ .

4.2.2 Aggregation of saliency scores

The scores are aggregated in two steps. First, we reduce dimension one of each saliency
matrix S. For aggregating the r saliency values per latent variable for every time step
t = 1, .., T , we adapt the proposed aggregation of the input embedding across the rows
of the attention matrix in [63]: Instead of building the column sums and normalizing
the resulting row vector, we sum the attention scores across the columns and apply
the softmax function. This procedure results in one saliency vector SV (ln) per latent
feature ln, l ∈ {A,ω, φ} and n = 1, ..., T̃

SV (ln) = softmax((
r∑
i=1

sãi,1 , ...,
r∑
i=1

sãi,T )).
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The same aggregation is performed on the raw attention matrix, resulting in the raw
attention vector AV ,

AV = softmax((
r∑
i=1

sãi,1 , ...,
r∑
i=1

sãi,T )).

This attention vector can be interpreted as a vector of importance weights wt ∈ [0, 1]
for each time step t = 1, ..., T , where

∑T
t=1wt = 1.

In step two, all saliency vectors belonging to the same concept are averaged, resulting
in one overall saliency vector per concept

SV (l) = 1
T̃

T̃∑
n=1

SV (ln), l ∈ {A,ω, φ},

which again can be interpreted as a vector of importance weights w′t ∈ [0, 1], where∑T
t=1w

′
t = 1.

4.2.3 Calculation of distance-based importance score
The aggregation step results in four importance vectors; the attention vector and one
saliency vector for each Fourier concept. The overall goal is to quantify the likelihood
of the decision for the prediction being based on the Fourier concepts. We choose to
assign a score p ∈ [0, 1] to the importance scores provided by the attention mechanism,
relating the attention output to the latent Fourier concepts. A high score implies a
high likelihood of the explanation indicating a difference in the sampling distribution
of at least one of the Fourier concepts between the two classes, whereas a low score
signifies that the reason for the prediction decision cannot be related to the Fourier
concepts.
First, the similarity between the importance embedding provided by the attention
vector and each embedding presented by the different saliency vectors is quantified in
terms of the euclidean distance d,

d(l) = ‖AV − SV (l)‖2, l ∈ {A,ω, φ}.

Since both vectors sum up to one, for the maximum euclidean distance between the
vectors we have

d(l) ≤ 2 ∀l.

Thus, a distance of d = 2 implies complete unalignment of the importance embeddings,
whereas d = 0 signifies that vectors are identical. We argue that the relation between
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the euclidean distance and similarity between the two saliency vectors is not linear.
Importance embeddings with a distance of one should not be interpreted as similar in
the sense that the vectors do not provide approximately the same explanations.
We choose to transform the distances d via a negative exponential transformation, thus
penalizing higher distances. This closely matches the intuition of similarity between the
importance embeddings. Furthermore, this assumption naturally provides the required
limit

d(l) = 0⇒ s(l) := exp(−d(l)) = 1,

stating that the explanation given by the attention mechanism can completely be traced
back to the importance of the latent Fourier concept if the embeddings are entirely
alike, where s(l) represents the overall saliency score for concept l. Nevertheless, the
requirement

d(l) = 2⇒ s(l) = 0

is not fulfilled by the stated assumption, since exp(−2) 6= 0. Thus, the negative
exponential transformation function needs to be adapted to fulfill this requirement as
illustrated in Figure 4.3.

Figure 4.3: Comparison of exponential density function and shifted function s(l).

To ensure s(2) = 0, a shift is introduced to the score calculation, resulting in the final
formula

s(l) := exp(−d(l))− d(l)
2 exp(−2).

Although the definition of s(l) does not state a probability, the adapted transforma-
tion benefits from easy interpretability. To assign an overall score p ∈ [0, 1] for the
importance of the latent Fourier concepts, the three latent saliency scores are averaged

p = 1
3(s(A) + s(ω) + s(φ)). (4.1)

The procedure of the method can be summarized as follows.
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1. Retrieve Fourier coefficients from the original time series

2. Apply saliency method (Gradient × Input) to output vector/matrix with respect
to all Fourier coefficients.

3. If original explainability output has more than one dimension, perform aggregation
step of original explainability output and each latent saliency output separately.
In any case, aggregate saliency vectors belonging to the same Fourier concept.

4. Apply softmax function to resulting original explanation vector and the three
concept-wise saliency vectors separately.

5. Measure euclidean distance d between the original explanation vector and the
concept-wise saliency vectors.

6. Average resulting similarity scores s(A), s(ω), s(φ) to obtain final likelihood p of
the explanation being based on the latent feature, where

s(l) := exp(−d(l))− d(l)
2 exp(−2), l ∈ {A,ω, φ}.

4.3 Global approach: Logistic regression
Designing global saliency methods is far more challenging than the development of a
local explainability method. Averaging the explanations provided by local methods for
all samples in a data set does not necessarily yield useful and accurate results, due to
the underlying structure of the dataset.
As a straightforward global approach, we propose to fit a logistic regression model
on the latent features of the test data set to the predicted class label. The resulting
coefficients can be interpreted as indicators for the effect each single latent feature had
on the classification outcome.

The algorithm for calculating global importance scores based on logistic regression
proceeds as follows.

1. Calculate Fourier coefficients for each sample in the test data set.

2. Choose k combinations (An, ωn, φn), n = [1, . . . , T̃ ] per sample for which An
belongs to the highest k amplitudes present in the respective sample. The
parameter k can be determined through resampling the input time series starting
from only one combination of coefficients and iteratively increasing the number
of combinations while observing the resampling loss. Choose k as the number of
combinations for which the loss curve levels off.
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3. Interpreting these k combinations per sample as the predictors, fit logistic regres-
sion model with the predicted label ŷ as the dependent variable

p(ŷ = 1)
p(ŷ = 0) = exp(β0+β1a0 + β2A1 + β3ω1 + β4φ1+

...+ β3k−1Ak + β3kωk + β3k+1φk)

4. The absolute value of the sum of coefficients of β = (β0, ..., β3k+1) belonging
to the same concept represents the final importance score. The coefficient β0
is interpreted as the relevance of aspects which cannot be related to the latent
Fourier concepts, as for example the relevance of positional features in the time
series.

This approach can be employed as a baseline for comparing our local latent feature
explainability method and possible also future methods against. Furthermore, employ-
ing a logistic regression approach on the latent features can provide a good starting
point for future research of global latent saliency methods. The benefit of a logistic
regression model is its easy interpretability and universal applicability.
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Results and Discussion

5.1 Results

The conducted experiments were twofold. In a first step, the performance of various
time series classifiers on multiple data sets was assessed. One ante-hoc and three
post-hoc explainability methods were employed to explain the classification outcome.
The results of the experiments provided in this section underline the need of a latent
feature saliency detection method. In the second step, the proposed global and local
latent feature saliency methods were applied to extend the the explanations provided
by the input-cell attention mechanism to the latent space of the time series. Results of
the conducted experiments categorized by classification performance, explainability
method evaluation and latent feature saliency detection are presented in the following.

5.1.1 Results of comparison of classification performance

In binary classification, the performance is commonly assessed through a combination
of multiple performance measures and metrics. Accuracy, the fraction of the number
of correctly classified samples and the sample size, is the most employed performance
metric. Although maximizing accuracy is in many cases seen as the primary goal
in a classification task, only providing accuracy as a measure of performance can be
misleading due to the accuracy paradox, i.e. in the presence of a class-imbalanced data
set. High accuracy does not always imply good performance [97]. Thus, it it necessary
to determine sufficiently many evaluation metrics suitable to the classification task and
optimization goal to objectively evaluate and compare classification performances [19].
Four basic performance measures can be directly inferred from the classification output;
the number of correctly positive classified samples (TP ), the number of correctly nega-
tive classified samples (TN) as well as the number of positive and negative misclassified
samples (FP/FN) respectively. Combined, these measures are commonly depicted as
a confusion matrix or contingency table [19]. Multiple performance metrics can be
directly calculated from these basic measures. The true positive rate (TPR), as well
referred to as sensitivity or recall, depicts the ratio of TP to the number of positive
samples P = TP +FN . In the same manner, the true negative rate (TNR) represents
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the ratio of TN to the number of negative samples. Precision states the relation of
true positive samples to all samples classified as positive [27]. Which metric should be
considered more important strongly depends on the use case. In the medical domain,
high recall is often more important than high precision, since falsely classifying a
sick person as healthy might lead to life-threatening situations. The F1 score states
the harmonic mean of recall and precision, thus being insensitive to TN [19]. In
receiver operating characteristic (ROC) analysis the trade-off between TPR and TNR
is investigated, which is commonly visualized by plotting TPR against FPR [27] The
area under the ROC curve (AUROC/AUC) is considered to be the most informative
metric to represent the performance in binary classification tasks [19]. The AUC only
considers the rank of the scores, ignoring the magnitude [27].

We evaluated the performance of the classifiers on the test data set using the metrics
accuracy, precision, recall, F1 score and AUROC. Table 5.1 depicts the average
performance of the evaluated classifiers across all data sets. A description of the data
sets was provided in Section 3.1. More details about the data sets can be found in
Section B.1 in Appendix B. The evaluation metric results per experiments are as well
provided in Appendix B.

Classifier Accuracy Precision Recall F1 AUROC
LSTM 0.8398 0.8258 0.8570 0.8364 0.8477
LSTM + SGT 0.8016 0.7854 0.8094 0.7865 0.8243
AttentionLSTM 0.9383 0.9103 0.9789 0.9422 0.9616
CNN 0.8332 0.8270 0.9875 0.8823 0.9370
TCN 0.8863 0.8821 0.9922 0.9201 0.8948
CNN + SGT 0.9340 0.9311 0.9883 0.9508 0.9681

Table 5.1: Average classification performance on test data across all data sets.

Overall, the CNN combined with SGT achieved the highest performance, whereas the
LSTM and the LSTM combined with SGT where not able to compete with the other
classifiers. On average, the CNN-based architectures had a stronger performance than
the LSTM-based models. The low results of the LSTM might be related to its difficulties
learning long-term dependencies as necessary for experiment three (shapelet at random
position) and the experiments in which the label was based on a difference in the phase
shift. Supporting results can be found in tables B.4, B.10 and B.11. The saliency guided
training procedure did not improve the average performance of the LSTM, whereas it
consistently improved the average performance of the CNN. In contrast, the input-cell
attention mechanism strongly improved the classification performance of the LSTM,
making the model competitive with the CNN-based architectures. The TCN, especially
designed for application in the time series domain, achieved a heightened performance
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in comparison to the standard CNN, even outperforming the other classifiers on the
experiments which test the detection of the phase shift as the label-making feature.
Details can be found in tables B.10 and B.11 in appendix B.
The classification performance is further visualized in Figure 5.1 depicting the ROC
curves as well as AUROC values of the different classifiers across all experiments. The
experiment numbers are ordered corresponding to the respective label-making feature.
In experiments three to six, a shapelet is present in class one whereas it is missing
in class zero. The label in experiments 101 and 102 is based on a difference in the
sampling intervals of the frequency. In experiments 103 and 104, the phase shift is
responsible for the class label and in experiments 105 and 106 the label-making feature
is the amplitude. More detailed descriptions about the experiments can be found in
table B.2 and B.1 in appendix B.1.

Figure 5.1: ROC curves of evaluated classifiers across all experiments

Overall, the classifier achieved better results on the experiments in which the label was
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assigned based on a latent Fourier concept. Scenarios in which the label is based on
frequency or amplitude were especially easy to classify. The experiments focusing on
the phase shift posed a challenge to the LSTM and the LSTM trained through saliency
guided training. All other classifiers could successfully identify the class-differences.
Differences in the classification performance of the classifiers depending on the number
of sines of the Fourier series could not be observed.
The classifiers showed a very diverse performance on the shapelet experiments. If
the shapelet was placed at a random position in the time series, the achievements of
the models were similar to performance on the Fourier concept-based data sets. The
performance on the data sets, in which the label depends on a shapelet at a fixed
position, is very different from all other results as well as inconsistent across the three
experiments. In some cases, the standard LSTM model is able to correctly assign
class labels to the entire test data set, whereas multiple CNN-based classifiers do not
perform better than random guessing, in the sense that these classifiers assign the same
label to all samples. We hypothesize, that by imputing a shapelet at a fixed position,
a bias was introduced into the data set. As a result, the classifiers learned to focus on
the respective time step instead of focusing on the shapelet. For the detailed results of
the classification metrics we refer to Appendix B.

5.1.2 Results of comparison of explainability methods

For assessing the performance of an explainability method, no omni-applicable quanti-
tative metric has been introduced in the literature yet. This is partly due to the fact
that there does not exist a universal definition of the properties which an explainability
technique must fulfill. The most common way of evaluating an explainability method
is by measuring the faithfulness of the method. Faithfulness is fulfilled if the saliency
scores assigned to each input feature truly indicate importance [61]. This commonly is
assessed through the drop or increase in accuracy represented by the area under or
over the perturbation curve respectively, after important features are removed from an
input sample or important features are added to an uninformative baseline sample [73,
80]. Nevertheless, there exist much criticism of these measures of faithfulness [61].
Since we conduct experiments on synthetic data, we guarantee a supervised evaluation
setting for the explainability methods. Therefore, we do not measure the performance
of the tested methods based on a quantitative metric, but only visually evaluate the
methods performance.

We intend to visually compare the results provided by the post-hoc feature attribution
methods IG and SHAP, as well as the attention scores assigned by the input-cell
attention mechanism through an importance heat map overlaid by the original time
series. This visualization method allows us to directly assess the relevance of each input
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time step for the prediction outcome. If a shapelet is responsible for the class label,
we expect the heat map to highlight the time steps in which the shape is occurring.
For the experiments which test the detection of the amplitude or the frequency as
label-making feature, we expect to see an oscillating heat map focusing either on the
peaks or on the valleys of the time series. If the label is based on the phase shift, we
expect to either see an emphasis on the beginning of the time series, corresponding to
the detection of the importance of the dominant phase shift, or to see a less sparse
heat map following the pattern of the peaks or valleys in the input series.
The attention scores provided by the input-cell attention mechanism cannot directly be
interpreted as relevance scores per time step, since the mechanism provides r different
values for each time step. For aggregating the r attention scores per latent variable for
every time step t = 1, .., T , we follow the proposed aggregation of the input embedding
across the rows of the attention matrix in [63]. After summing the rows of the matrix,
the resulting vector is normalized to provide relevance scores in the range of zero to
one.
For evaluating the performance of the counterfactual method of Native Guide, the
interpretability of the provided explanation is assessed via visual comparison of the
instance of interest and the generated counterfactual.

The performance of an explainability method is closely related to the original clas-
sification performance of the underlying model. Thus, especially for the LSTM and
the LSTM trained via saliency guided training, less informative saliency heat maps or
counterfactuals are to be expected. Figure 5.2 depicts examples of the explanations
provided by the method Integrated Gradients for the classification by the standard
LSTM, the LSTM trained through saliency guided training and the LSTM combined
with the input-cell attention mechanism respectively. It is clearly detectable from the
explainability heat maps that the LSTM strongly suffers from the vanishing gradient
problem. Only few time steps in the end of the time series are assigned an attribution
score different from zero. Contrary to the observations in [41], the training procedure
did not help to diminish the vanishing saliency problem in the LSTM. In contrast, the
input-cell attention mechanism strongly improved the performance of the employed
gradient-based saliency method.

In Figure 5.3, heat maps created based on importance scores assigned by the methods IG
and SHAP are compared. The explanations provided by IG align with our expectations
and are comparatively easy to interpret. In contrast, the heat map constructed based
on importance scores assigned by SHAP do neither align with our expectations nor
permit easy interpretability. Thus, we focus on the gradient-based method Integrated
Gradients for further comparisons and evaluations. Nevertheless, we note that multiple
different explanations can coexist [101]. Claiming the failure of the feature attribution
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(a) If the label is based on frequency, only on the AttentionLSTM the method IG can correctly
highlight frequency related patterns. SGT does not significantly reduce the vanishing
saliency problem.

(b) The saliency method IG is not able to highlight the shapelet in the middle of the time series
on the LSTM and LSTM+SGT. On the AttentionLSTM the method correctly identifies
the start of the shapelet as important.

(c) On the LSTM the explainability method successfully highlights the starting point of the
shapelet. We hypothesize that the classifier learned to only focus on the first few time
steps, due to the fixed position of the shapelet in the beginning of the time series. SGT
does not improve the saliency performance.

Figure 5.2: Comparison explanations provided by IG on LSTM, LSTM + SGT and Atten-
tionLSTM.
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(a) Explanations provided by IG. In experiment 106 the method clearly focuses on aspects
related to the amplitude. In experiment 3 the method identifies the shape possibly through
a change in frequency, indicated by the highlighted peaks.

(b) Explanations provided by SHAP. The results for experiment 106 are visually not inter-
pretable and thus not human friendly. In experiment 3 the method highlights time steps
outside of the region of the shape.

Figure 5.3: Comparison of importance heat maps from feature attribution methods IG and
SHAP on experiments 3 and 106 employing CNN and CNN + SGT.

method Kernel-SHAP in our experiments should thus not be directly concluded only
from a comparison with other explanations.

After observing the strong classification performance of the LSTM combined with the
input-cell attention mechanism in Section 5.1.1, we compare the explanations provided
by the attention scores to the explanations provided by the gradient-based saliency
method IG. Figure 5.4 depicts heat maps based on IG and on the attention scores
for each one input time series of class 0 sampled from low frequencies and class 1
sampled from high frequencies of experiment 102. Both methods focus on the valleys
of the time series, thus correctly implicating a transformation of the concept frequency.
In the direct comparison of the explainability heat maps, it is observable that the
attention-based maps are on one hand more precise than the gradient-based heat maps
and on the other hand consistent over time. Due to the superior explanations provided
by the attention scores, we decided to develop an extension of the input-cell attention
mechanism to the latent space as introduced in Chapter 4. Based on the stated and
other similar observations, interpreting attention as explanation is justifiable for the
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(a) Background heat map of the attention scores. A lighter color represents a higher
score and thus higher importance. The attention mechanism clearly focuses on
frequency-related patterns in the time series.

(b) Background heat map of the feature attribution scores assigned by the explain-
ability method Integrated Gradients. The identified importance pattern coincides
with the importance pattern identified by the attention scores.

Figure 5.4: Comparison of importance heat maps from attention scores and IG for experiment
102 (important feature = frequency).

conducted experiments.
The counterfactual explanation method Native Guide achieves mixed performance on
the different data sets as shown in Figure 5.5 and Figure 5.6. This type of explainability
method is not visualized through a heat map, but by a direct combined plot of the
instance of interest and the counterfactual itself.
Generating counterfactuals through weighted dynamic barycenter averaging of the
instance of interest and its nearest unlike neighbour when the class label was based on
the amplitude or phase shift, provides valuable visualization results, as can be seen in
Figure 5.5. The counterfactual correctly depicts a translation in phase or amplitude.
Nevertheless, direct interpretability can be difficult, as the results might easily be
misleading.
While the method finds the nearest unlike neighbor (NUN) across the whole training
data set, there is a possibility that the NUN is a misclassified instance from the same
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(a) The counterfactuals have a significantly lower amplitude than the instance of interest (TCN
experiment 105).

(b) Besides a shift along the time time axis the instance of interest and the counterfactual are
very similar (CNN + SGT experiment 104).

Figure 5.5: Good explanations provided by the counterfactual method Native Guide perturb-
ing the NUN through barycenter averaging when the class label depends on one
of the latent features amplitude or phase shift.

class. This can lead to unuseful explanations. An extreme case of this behaviour can be
observed in experiment three, in which the label depends on the presence of a shapelet
in the time series. Example visualizations can be found in Figure B.1 in Appendix B.3.

Overall, the counterfactual method Native Guide did not provide satisfactory explana-
tions. In many cases there was no immediate human-readable interpretation associated
to the results. This observation opposes the conclusion in [81] which recommends the
use of counterfactuals instead of feature attribution methods as explanations, especially
for non-experts in the respective domain. The authors propose to a two-step approach to
gain insights into the decision process of a model. After the first overview was provided
by counterfactuals, in-depth analysis can be performed through feature attribution
methods. In our experiments, counterfactual explanations can aid in interpreting the
visualizations of the feature-wise importance scores. Even unreasonable results as in
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(a) The method correctly inserts a shapelet
in the counterfactual. Nevertheless, the
explanation provided by the counterfac-
tual is not very precise and not necessar-
ily useful.

(b) Since the counterfactual includes a
shapelet as well, an interpretation of the
provided explanation is rather difficult.

(c) Perturbation based on feature attribution
scores might lead to completely unrea-
sonable explanations (TCN experiment
106).

(d) Sparse results provided by perturbation
based on feature attribution scores which
are not necessarily close to the data dis-
tribution (TCN experiment 105).

Figure 5.6: Mixed results for the counterfactual explanation method Native Guide.

Figure 5.6 (c) can help in differentiating between high feature importance scores due
to frequency or amplitude.

5.1.3 Latent feature saliency results
Figure 5.7 depicts histograms of the final scores p derived through equation 4.1 over the
complete test data set for each experiment. In Figure 5.7(a), the results for experiment
three in which the label was based on a shapelet at a random position in the time
series are presented. Our method presented in Chapter 4 correctly assigns low scores,
indicating that the explanation provided by the attention mechanism cannot be related

50



5.1 Results

(a) Low scores are assigned,
implying that the label
does not depend on the
Fourier concepts.

(b) The method does not
provide much insights
about the importance
of the latent space.

(c) Contrarily to our expec-
tation, the method con-
sistently assigns high
scores.

(d) As in experiment 5,
the method implies im-
portance of the latent
space.

(e) The importance of the
latent space can be de-
tected in all samples of
the test set.

(f) The very high scores
across the test data set
correctly imply the im-
portance of the Fourier
concepts.

(g) If label depends on the
phase shift, the method
consistently assigns ex-
tremely high scores.

(h) As for experiment 103
the results strongly im-
ply high importance of
the Fourier concepts.

(i) If the label is based
on the amplitude, the
method fails to provide
accurate results.

(j) Similar behaviour as in
experiment 105 can be
observed.

Figure 5.7: Distribution of latent saliency scores p across the test data set per experiment.
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to the Fourier latents. The latent saliency results for the experiments in which the
label was based on frequency or phase shift are outlined in Figure 5.7(e) to 5.7(h).
Our method consistently assigns high scores, implying that the explanation should be
interpreted in terms of the Fourier concepts.

If the class label is based on the amplitude, our method is not able to consistently assign
high scores, but rather is indifferent about the importance of the Fourier concepts. We
hypothesize that this behaviour is due to the direct linear relation of the amplitude
with the resampled input time series in contrast to the non-linear indirect relation
of frequency and phase shift. For the experiments in which the label is based on the
presence of a shapelet in either the beginning, the middle or the end of the time series
respectively, our method does not provide the expected results in form of consistently
low scores as can be observed in Figure 5.7(b) to 5.7(d). Nevertheless, the unexpected
latent saliency scores do not imply the failure of our method, but are caused by the
misleading explanations provided by the attention mechanism as presented in Figure 5.8.
Instead of highlighting time steps in which the shapelet occurs, the mechanism seems
to focus on frequency- or amplitude-related aspects.

(a) If there is no shapelet present in the time series, the provided explanation is slightly similar
to the heat map when amplitude or frequency are important.

(b) In experiments four and five, the method does not highlight time steps in which the shape
occurs. The explanation provided for experiment six has a slight similarity to heat maps
for experiments in which amplitude or frequency are important.

Figure 5.8: The attention mechanism fails to provide useful results on the shapelet experiments
four, five and six.
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We note that the provided explanations should not be interpreted as a failure of the
attention mechanism as an explainability method, since the classifier overall achieves
very high performance and even outperforms the other classifiers in experiments five
and six as depicted in table B.5 to B.7 in appendix B. Due to the fixed position of the
shapelet, the classifier potentially learned a proxy for the shape in terms of frequency.
Explainability methods do not necessarily explain the obvious human-interpretable
reasons for a classification outcome, but the aspects the decisions of the classification
model are based on.

Figure 5.9: Global importance of latent features per experiment.

As a global latent saliency method we proposed to employ a straightforward logistic
regression approach on the Fourier coefficients. The resulting regression coefficients
corresponding to the same concept amplitude, frequency or phase shift are summed to
obtain the final latent saliency score per concept. The logistic regression coefficient of
the regression offset is interpreted as an importance score for features different from
the three mentioned concepts. This could also be a feature in the time dimension as a
class specific shape. Figure 5.9 depicts the global latent saliency results per experiment.
The method clearly detects the importance of the amplitude in the case in which the
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label depends on this latent concept (experiment 105 and 106). All other scenarios for
assigning a class label cannot easily be explained by the proposed global method. The
aggregation of the regression coefficients to one importance score per concept introduces
a huge loss of information as can be seen by comparing Figure 5.9 with Figure 5.10 (a)
and (c). Part (c) clearly depicts an important effect which cannot be related to the
latent concepts amplitude, frequency and phase shift. After aggregation, as shown in
Figure 5.9, the two scenarios in which the label is based on a shape in the time series
or on the latent concept frequency cannot be distinguished anymore. Furthermore, the
saliency method does not differentiate between importance of frequency and importance
of the phase shift.

(a) The model is not able to confi-
dently assign high scores to the
important concept frequency.

(b) Importance of the phase shift is
easily confused with an effect of
the frequency.

(c) If the label is based on a shape in
the time series, the coefficient of
the offset is extremely heightened.

(d) The effect of the amplitude can be
easily detected by the method.

Figure 5.10: Coefficients of logistic regression for different experiments. The coefficient for
the offset as well as for the latent features frequency, amplitude and phase shift
are separated by red lines in the stated order.

5.2 Discussion
In the following section, conclusions and recommendations based on the presented
results are stated. Furthermore, the applicability of the proposed latent feature saliency
framework and its limitations are discussed.
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5.2.1 Classification performance and explainability

From the comparison of the classification performance we observe that the CNN strongly
outperforms the LSTM on the presented time series classification tasks. The input-cell
attention mechanism strictly improves the classification performance of the LSTM.
These observations contrast the results and conclusions in [100]. The authors state
that there is no significant difference in the performance of LSTM, CNN and LSTM
combined with an attention mechanism on the task of process outcome prediction. In
our work we obtained empirical results and examples which illustrate settings where
the attention mechanism adds high value to the LSTM for time series classification
problems. Although the tasks and architectures are not completely alike, we question
the conclusions taken about the attention mechanism, especially due to the high popu-
larity of the latter in the literature. We argue, that it is essential to carry out further
rigorous and versatile analysis in order to justify the increased popularity of employing
attention mechanisms in the stated tasks.

The runtime of the CNN models is significantly shorter than of the LSTM-based
classifiers as shown in table B.14 in Appendix B. In this aspect we agree with the
authors of [100], recommending the use of CNNs over the use of LSTMs due to the
stated observation. Although the saliency guided training procedure adds high value
to the CNN, it strongly increases the computational complexity of the classifier, since
a masked input and the respective classification output need to be computed for every
input sample and the overall loss function is heightened in complexity as well. The
same observation holds true for the LSTM combined with the input-cell attention
mechanism. An attention embedding is computed for every input sample before it is
passed to the LSTM. We are thus facing a trade-off between classification performance
and computational complexity. Solely the TCN is able to improve the classification
performance while keeping the same level of complexity. Thus, if run-time is a critical
aspect we recommend the use of a temporal convolutional network architecture in
terms of classification and explainability performance.

Based on the comparison of the three post-hoc and the attention mechanism as ante-hoc
explainability methods, we find that the provided explanations mostly do not match
each other. This observation is in accordance with the results in [70]. Nevertheless,
since the explanations provided by IG and the attention mechanism are very similar
and further correspond to the heat maps we expected to observe in the different
scenarios, we argue that these two methods should be considered the strongest in terms
of providing interpretable importance scores throughout our experiments. As stated
in Section 5.1, we do not intend to condemn the other explainability methods. Since
multiple explanations can coexist [101], it might aid to consider various XAI methods
to find the correct interpretation of a model. From our experiments it became obvious
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that counterfactual explanations, although difficult to interpret on their own, can help
to clarify the explanations from heat maps based on feature attribution or attention
scores.

5.2.2 Attention as explanation

We have shown that in our setting, attention weights are highly correlated with gradient-
based feature attribution scores, contradicting the related finding of [45]. Thus, we
conclude that the input-cell attention mechanism can be employed for explanation
purposes on time series classification tasks. We note, that the studies in the literature
condemning the usage of attention mechanisms as explanations investigate different
types of mechanisms. Therefore, the respective conclusions are not mutually exclusive.
Nevertheless, we emphasize on the strong explanatory power of the input-cell attention
mechanism and recommend to consider this type of attention architecture in the ongoing
discussion of whether attention is explanation. To legitimately deduce explanations
from attention mechanisms, it is inevitable to define boundaries of the applicability of
these mechanisms as XAI methods based on solid theoretical background and domain
knowledge.

5.2.3 Applicability of the proposed method and limitations

Our proposed method does not require access to the classification model itself. There-
fore, it is highly applicable to many real world scenarios in which the end-user of a
classification model is only provided with an interface of the classifier, but not with
the model itself. An AI model might run on an external server operated by the IT
department of a company. End-users send the to-be-classified samples to the server and
are provided with a prediction. For interpretation and explanation of the classification
outcome, a model-agnostic explainability method is needed.
Nevertheless, the proposed extension of explainability methods cannot be considered
completely model-agnostic, since for calculation of the saliency scores per latent feature
access to the internals of the original explainability technique is necessary. Furthermore,
for allowing a gradient calculation, the explainability method which should be extended
needs to be differentiable as a function of the latent parameters. Since in general,
explainability methods do not necessarily need to be differentiable, this poses a strong
limitation on the proposed latent feature saliency method. Since our method is based
on gradient calculations, it suffers from the same known problems as other gradient
based techniques as for example high noise.

For the scope of this project the latent Fourier concepts amplitude, frequency and
phase shift were considered. If the class-label of a time series is based on different
latent concepts as trend or change points, the proposed method is likely to yield low
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scores, implying that the classification decision was not related to the Fourier concepts.
Although this implication holds true, it poses strong limits on our framework. An
extension of the latent feature saliency framework to other latent is necessary for real-
world application. In some cases the framework might yield high results, although the
class label depends on a shapelet. If the classifier associated the presence of a shapelet
with a change in distribution of the Fourier coefficients, our framework will assign high
scores to the latent concepts. This might be an explanation for the unexpected results
of experiments four to six.

The logistic regression approach as a global baseline method can be applied to provide
latent feature explainability of any classifier if access to the data set is given. In real
world scenarios this might not necessarily be the case. A doctor wondering why a
patient was diagnosed with neurological disorder based on classification of his gait via
wearable sensor technology most probably does not have access to the AI model itself
let alone the data set on which the model was developed.
This limitation in applicability was one reason for focusing on local explanations
throughout this thesis. The provided global method in general does not provide
satisfactory results. Nevertheless, we argue that it might be worth following the idea
of adapting a logistic regression approach for the purposes of global latent feature
explainability in future work.
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Conclusion

Explainability of deep time series classification is an uprising and highly important field
of research. To aid building trust in AI model as well as to identify artifacts and failure
modes, interpretation and explanation of the black-box classifiers is essential. Various
XAI methods designed for different domains have been introduced in the literature to
explain time series classification. These methods focus on positional information of
the input features, providing spatial explanations. In time series data, the class label
does not necessarily depend on positional information, but might as well depend on
the latent space features of a time series. To the best of our knowledge, there does not
exist an XAI method with the ability to explain the importance of latent features in
the literature.

In this thesis, we outlined and formalized this problem of current XAI methods for
time series classification and developed a framework for extending the interpretation of
time-step-wise importance scores to the latent space of the time series. To do so, we
compared multiple LSTM and CNN-based classifiers on various synthetic univariate
time series data sets. We empirically showed that if the class-label is based on the
latent features of the time series instead of the presence of a certain shape, commonly
applied XAI methods do not provide accurate or human-interpretable explanations.
To tackle this problem, a novel extension of these explainability methods was provided
which maps the importance scores per time step to one overall importance score of
the Fourier-based latent space of the time series. Our proposed framework was able to
correctly identify the importance of the latent Fourier features in almost all conducted
experiments. Additionally, we provided a baseline approach for future research on
global latent explainability methods for time series classification.

Furthermore, we investigated the interpretive power of different post-hoc explainability
methods. We found that heat maps from a gradient-based post-hoc explainability
method accurately highlight the informative temporal regions, i.e. a shapelet or a
pattern which is implicative of a latent information, providing comparatively easy
interpretation. Although counterfactual explanation methods are recommended as a
simple interpretable method for non-experts in the literature, our experiments showed
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that the provided explanations often are imprecise or far from the ground truth, pre-
venting a direct interpretation. Nevertheless, these explanations can aid in analysing
the heat map visualizations of timestep-wise importance scores. The legitimisation
of attention mechanisms as ante-hoc XAI methods is a lively discussed topic in the
literature. Our experiments provide evidence for interpreting attention as explanation.
Attention-based heat maps not only align with gradient-based heat maps, but also
present more precise and consistent explanations over time.

As for future work, application of the proposed explainability method extension frame-
work to other explainability techniques can be investigated. An extension of the
framework to provide one importance score per latent concept would additionally be of
high interest. During this project, the latent features amplitude, frequency and phase
shift were considered. Other time series models such as state space or switching point
models, with respective parameters such as trend or change points can be considered.
An extension of the proposed method to provide importance scores for further latent
features is as well left for future work. Moreover, testing our framework on data sets
in which a combination of multiple features is responsible for the class label is of great
interest.

Overall, we highlighted the problem of common XAI methods lacking the ability to
assign importance scores to the latent space of a time series and proposed a novel
framework for extending explainability methods to also consider latent features. Due to
its comparatively general applicability, the provided framework presents a good baseline
for future methods. In general, our work sheds light on the need for further research in
the field of latent feature saliency detection for deep time series classification.
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Appendix A

Notations
In this appendix, notations and symbols as well as abbreviations employed throughout
the thesis are listed.

Abbreviation Description
AI Artificial Intelligence
AUROC/AUC Area under the ROC curve
CNN Convolutional Neural Network
DBA DTW Baryventer Averaging
DNN Deep Neural Network
DTW Dynamic Time Warping
FCN Fully Convolutional Neural Network
FFT Fast fourier transform
FN / FP False negative / false positive
FNR / FPR False negative rate / false positive rate
IG Integrated Gradients (feature attribution method)
LRP Layer-wise relevance propagation
LSTM Long Short Term Memory
NUN Nearest unlike neighbor
RNN Recurrent Neural Network
ROC Receiver operating characteristic
SENN Self Explaining Neural Network
SGT Saliency guided training
SHAP Kernel SHapley Additive exPlanation Values
TN / TP True negative / true positive
TNR / TPR True negative rate / true positive rate
TCN Temporal Convolutional Network
XAI Explainable Artificial Intelligence
xDNN Explainable Deep Neural Network

Table A.1: List of abbreviations
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Symbol Description
X,Y Time series vector with values (x1, ..., xT ) or (y1, ..., yT ) respectively
Ȳ Average time series
T Length of time series
D Dataset
A Amplitude
ω Frequency
φ Phase shift
a0 Initial offset in Fourier series
ñ Number of amplitudes present in the time series
T̃ Maximum number of amplitudes which can be recovered by FFT
f Classification/ prediction model
σ Sigmoid function
S Saliency matrix
SV Saliency vector
s Importance score
A Attention matrix
ai,t Element (i, t) of the attention matrix
ãi,t Element (i, t) of the raw attention matrix
AV Attention vector
αi,t Attention weight (synonym for element (i, t) of the attention matrix

used in the literature)
W Weight matrix
w Weight
p Score for likelihood of explanations being related to the latent features
� Element-wise multiplication
∗ Convolution operation

Table A.2: List of symbols and notations

62



Appendix B

Experimental design and results

B.1 Data generation
All time series were sampled to have equal length of 300 time steps. For training,
validating and testing the data set of in total 2560 samples was split into sets of 2048,
256 and 256 samples respectively.

Experiment Label feature Description of shapelet
3 Shapelet Random position,

window length of 0.2 ∗ sequence length

4 Shapelet Fixed position,
last 0.2 ∗ sequence length timesteps

5 Shapelet Fixed position,
starting at time step 0.4 ∗ sequence length
with window length 0.2 ∗ sequence length

6 Shapelet Fixed position,
first 0.2 ∗ sequence length timesteps

101 Frequency Overlapping frequency ranges

102 Frequency Overlapping frequency ranges

103 Phase shift Non-overlapping phase shift ranges

104 Phase shift Non-overlapping phase shift ranges

105 Amplitude Different dominant amplitude

106 Amplitude Different dominant amplitude

Table B.1: Label-making features per experiment.

Table B.1 lists the parameters and algorithms for assigning labels to each sample. In
table B.2 the parameters used for sampling the Fourier series are presented.
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Exp. Number Freq. Freq. Phase Phase Dominant Decay Noise
of sines low high low high amplitude rate ratio

3 10 π
300

π
60

−π
4

π
4 1 0.3 0.1

4 10 π
300

π
20

−π
4

π
4 1 0.3 0.1

5 10 π
300

π
20

−π
4

π
4 1 0.3 0.1

6 10 π
300

π
20

−π
4

π
4 1 0.3 0.1

101 10/10 π
300/

π
100

π
20/

π
2

−π
4 /−π4

π
4 /

π
4 1/1 0.3/0.3 0.1/0.1

102 1/1 π
300/

π
100

π
20/

π
2

−π
4 /−π4

π
4 /

π
4 1/1 0.3/0.3 0.1/0.1

103 1/1 π
300/

π
300

π
20/

π
20 0/−π4

π
4 /

π
2 1/1 0.3/0.3 0.1/0.1

104 10/10 π
300/

π
300

π
20/

π
20 0/−π4

π
4 /

π
2 1/1 0.3/0.3 0.1/0.1

105 10/10 π
300/

π
300

π
20/

π
20 0/−π4

π
4 /

π
4 1/3 0.3/0.3 0.1/0.1

106 1/1 π
300/

π
300

π
20/

π
20

−π
4 /−π4

π
4 /

π
4 1/3 0.3/0.3 0.1/0.1

Table B.2: Overview of simulation parameters of the Fourier series. If two entries are present
in one cell, each the classes were sampled from different distributions. The first
entry in each cell corresponds to the sampling parameter of class 0, the second
entry to class 1.

B.2 Implementation details
A detailed overview of employed network layers and hyperparameters is provided in
table B.3. For the input-cell attention mechanism the attention hops were consistently
chosen as r = 50. All classifiers only consisted of one layer. The layer-architecture of
each network is stated below. For the sake of simplicity no dropout-layers was employed
in the networks. The network weights were updated using the Adam optimization
algorithm.
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Classifier Architecture Further parameters
LSTM LSTM block + Fully Connected hidden-dim ∈ [4, 64]

+ Sigmoid
LSTM + SGT LSTM block + Fully Connected hidden-dim ∈ [4, 64]

+ Sigmoid
AttentionLSTM Input-cell attention + LSTM block hidden-dim ∈ [4, 64]

+ Fully Connected + Sigmoid
CNN 2 × (Conv(5) + ReLU + MaxPool(2)) stride length = 2,

+ Fully Connected + Sigmoid num. f. maps = 4, 8
CNN + SGT 2 × (Conv(5) + ReLU + MaxPool(2)) stride length = 2,

+ Fully Connected + Sigmoid num. f. maps = 4, 8
TCN 2 × (CausalConv(5) + ReLU dilation = 1, 2,

+ MaxPool(2)) stride(MaxPool) = 2,
+ Fully Connected + Sigmoid num. f. maps = 4, 8

Table B.3: Detailed description of the classifier architectures. The kernel size of the convo-
lutional layer and the max-pooling layer are stated in parenthesis following the
respective layer. Feature map (f. map) and dilation description correspond to the
two convolutional layers separately.

B.3 Results
This section provides supplementary material about the classification performance
for all conducted experiments, a comparison of the training time of the investigated
classifiers as well as further plots showing explainability results.

B.3.1 Classification metrics per experiment
Table B.4 to table B.13 provide the detailed evaluation results of the classifiers for
each experiment. As discussed in Chapter 5, overall the CNN + SGT achieves the
highest performance. The AttentionLSTM also significantly improves the performance
of the standard LSTM in almost all experiments. The classifiers were trained for 200
epochs each. Hyperparameter optimization was limited to 17 hours. As presented in
table B.14, the run-time varies enormously across the classifiers, which as well strongly
influences the hyperparameter optimization. Due to the heightened training time of
CNN + SGT and especially of the AttentionLSTM, the good performance of these
models should even carry more weight in the model evaluation and comparison.
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Classifier Accuracy Precision Recall F1 AUROC
LSTM 0.8281 0.7561 0.9688 0.8493 0.8516
LSTM + SGT 0.6992 0.6474 0.8750 0.7442 0.7272
AttentionLSTM 0.8633 0.7962 0.9766 0.8772 0.9170
CNN 0.9648 0.9612 0.9688 0.9650 0.9951
TCN 0.9766 0.9841 0.9688 0.9764 0.9982
CNN + SGT 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.4: Comparison of classification performance Experiment 3

Classifier Accuracy Precision Recall F1 AUROC
LSTM 1.0000 1.0000 1.0000 1.0000 1.0000
LSTM + SGT 1.0000 1.0000 1.0000 1.0000 1.0000
AttentionLSTM 0.9922 0.9922 0.9922 0.9922 0.9985
CNN 0.5000 0.5000 1.0000 0.6667 0.8037
TCN 0.5000 0.5000 1.0000 0.6667 0.3950
CNN + SGT 0.5000 0.5000 1.0000 0.6667 0.7449

Table B.5: Comparison of classification performance Experiment 4

Classifier Accuracy Precision Recall F1 AUROC
LSTM 0.5859 0.5655 0.7422 0.6420 0.6260
LSTM + SGT 0.7227 0.6887 0.8125 0.7455 0.7864
AttentionLSTM 0.9453 0.9130 0.9844 0.9474 0.9764
CNN 0.5234 0.5120 1.0000 0.6773 0.6932
TCN 0.5000 0.5000 1.0000 0.6667 0.6046
CNN + SGT 0.9883 0.9771 1.0000 0.9884 1.0000

Table B.6: Comparison of classification performance Experiment 5

Classifier Accuracy Precision Recall F1 AUROC
LSTM 1.0000 1.0000 1.0000 1.0000 1.0000
LSTM + SGT 0.8750 0.8636 0.8906 0.8769 0.9105
AttentionLSTM 0.9219 0.8648 1.0000 0.9275 0.9601
CNN 0.5000 0.5000 1.0000 0.6667 0.9370
TCN 1.0000 1.0000 1.0000 1.0000 1.0000
CNN + SGT 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.7: Comparison of classification performance Experiment 6
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Classifier Accuracy Precision Recall F1 AUROC
LSTM 0.9688 0.9412 1.0000 0.9697 0.9809
LSTM + SGT 0.9375 0.8889 1.0000 0.9412 0.9407
AttentionLSTM 0.9922 0.9922 0.9922 0.9922 0.9973
CNN 0.9961 0.9922 1.0000 0.9961 1.0000
TCN 0.9961 0.9922 1.0000 0.9961 1.0000
CNN + SGT 0.9961 0.9922 1.0000 0.9961 1.0000

Table B.8: Comparison of classification performance Experiment 101

Classifier Accuracy Precision Recall F1 AUROC
LSTM 0.9180 0.8591 1.0000 0.9242 0.9097
LSTM + SGT 0.8789 0.8593 0.9063 0.8821 0.9083
AttentionLSTM 0.8828 0.8451 0.9375 0.8889 0.9144
CNN 0.9258 0.8759 0.9922 0.9304 0.9519
TCN 0.9258 0.8759 0.9922 0.9304 0.9529
CNN + SGT 0.9258 0.8759 0.9922 0.9304 0.9479

Table B.9: Comparison of classification performance Experiment 102

Classifier Accuracy Precision Recall F1 AUROC
LSTM 0.5703 0.5978 0.4297 0.5000 0.5624
LSTM + SGT 0.5391 0.5472 0.4531 0.4957 0.5583
AttentionLSTM 0.8516 0.8169 0.9063 0.8593 0.8851
CNN 0.9336 0.9440 0.9219 0.9328 0.9897
TCN 0.9688 0.9762 0.9609 0.9685 0.9974
CNN + SGT 0.9297 0.9661 0.8906 0.9268 0.9881

Table B.10: Comparison of classification performance Experiment 103

Classifier Accuracy Precision Recall F1 AUROC
LSTM 0.5313 0.5385 0.4375 0.4828 0.5532
LSTM + SGT 0.5313 0.5769 0.2344 0.3333 0.5109
AttentionLSTM 0.9336 0.8828 1.0000 0.9377 0.9677
CNN 0.9922 0.9922 0.9922 0.9922 0.9998
TCN 1.0000 1.0000 1.0000 1.0000 1.0000
CNN + SGT 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.11: Comparison of classification performance Experiment 104
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Classifier Accuracy Precision Recall F1 AUROC
LSTM 0.9961 1.0000 0.9922 0.9961 0.9929
LSTM + SGT 0.8320 0.7815 0.9219 0.8459 0.9004
AttentionLSTM 1.0000 1.0000 1.0000 1.0000 1.0000
CNN 0.9961 0.9922 1.0000 0.9961 1.0000
TCN 0.9961 0.9922 1.0000 0.9961 1.0000
CNN + SGT 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.12: Comparison of classification performance Experiment 105

Classifier Accuracy Precision Recall F1 AUROC
LSTM 1.0000 1.0000 1.0000 1.0000 1.0000
LSTM + SGT 1.0000 1.0000 1.0000 1.0000 1.0000
AttentionLSTM 1.0000 1.0000 1.0000 1.0000 1.0000
CNN 1.0000 1.0000 1.0000 1.0000 1.0000
TCN 1.0000 1.0000 1.0000 1.0000 1.0000
CNN + SGT 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.13: Comparison of classification performance Experiment 106
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B.3.2 Run-time of classifiers
High computational complexity poses a restriction to the usage of AI models in real
world applications. Throughout the thesis we highlight the good classification and
explainability performance of the AttentionLSTM. The overall best-performing model
is the CNN trained through the saliency guided training procedure. Table B.14 outlines
the training times of all classifiers for each one experiment per label-making feature.
We can observe that SGT significantly increases the run-time of the models. The
AttentionLSTM suffers by far from the highest complexity. Thus, we are facing a
strong trade-off between performance and computational effort.

Exp. LSTM LSTM+SGT AttentionLSTM CNN TCN CNN+SGT
3 270.73 2634.76 22756.96 215.13 266.30 560.48
101 220.64 2647.27 10334.24 180.54 232.81 511.42
103 206.66 2272.49 3395.45 184.85 237.60 522.22
105 498.25 2651.30 22703.13 214.24 266.34 504.11

Table B.14: Comparison of training time of classifiers on each one experiment per label-making
feature in seconds.

B.3.3 Supplementary plots for explainability method evaluation
The counterfactual method Native Guide provides explanations of mixed quality. One
effect strongly increasing the difficulty of interpreting the provided explanations is
the search space for finding the nearest unlike neighbor (NUN). Since the NUN is
determined through a nearest neighbor approach in the complete training data set, it
is likely to be a sample falsely classified as the opposing class, but actually belonging
to the same class as the instance of interest. Although explainability methods are not
designed to explain the correct decision, but the classifiers actual decision process, the
provided results do not provide insights into internals of the classifier. An extreme case
of this behaviour is depicted in figure B.1. The classes differ through the presence or
absence of a very prominent shape. The provided explanations are highly uninformative
or even misleading.
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Figure B.1: Results of counterfactual method Native Guide are difficult to interpret, due to
misclassified nearest unlike neighbor, when label is based on a shape in the time
series.
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