Benutzer: Gast  Login
Titel:

AI Generated Galaxy Images

Dokumenttyp:
Forschungsdaten
Veröffentlichungsdatum:
12.07.2022
Verantwortlich:
Benjamin J. Holzschuh
Autorinnen / Autoren:
Benjamin J. Holzschuh; Conor M. O’Riordan; Simona Vegetti; Vicente Rodriguez-Gomez; Nils Thuerey
Institutionszugehörigkeit:
TUM
Herausgeber:
TUM
Identifikator:
doi:10.14459/2022mp1661654
Enddatum der Datenerzeugung:
24.03.2022
Fachgebiet:
DAT Datenverarbeitung, Informatik; PHY Physik
zusätzliche Fachgebiete:
Astronomy, Astrophysics, Artificial Intelligence, Image processing, Computer Vision
Quellen der Daten:
Simulationen / simulations; Abbildungen von Objekten / image of objects
Datentyp:
Bilder / images; Datenbanken / data bases
Methode der Datenerhebung:
Recent generative models were trained on datasets of galaxy images. The available datasets consist of galaxy images sampled from a StyleGAN-like model.
Beschreibung:
Datasets of AI generated galaxy images based on simulations (TNG-Illustris), observations (COSMOS) and analytic expressions (Sérsic profiles)
Links:

https://github.com/Akanota/galaxies-metrics-denoising

Schlagworte:
Machine Learning, Astrophysics, Cosmology
Technische Hinweise:
View and download (51 GB total, 4 Files)
The data server also offers downloads with FTP
The data server also offers downloads with rsync (password m1661654):
rsync rsync://m1661654@dataserv.ub.tum.de/m1661654/
Sprache:
en
Rechte:
by, http://creativecommons.org/licenses/by/4.0
Horizon 2020:
ERC Consolidator Grant SpaTe (CoG-2019-863850), European Union’s Horizon 2020 research and innovation pro-gramme (LEDA: grant agree-ment no. 758853)
 BibTeX