Benutzer: Gast  Login
Titel:

Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Li, Jiao; Wang, Cong; Chen, Tingting; Lu, Tong; Li, Shuai; Sun, Biao; Gao, Feng; Ntziachristos, Vasilis
Abstract:
Deep learning (DL) shows promise for quantitating anatomical features and functional parameters of tissues in quantitative optoacoustic tomography (QOAT), but its application to deep tissue is hindered by a lack of ground truth data. We propose DL-based "QOAT-Net," which functions without labeled experimental data: a dual-path convolutional network estimates absorption coefficients after training with data-label pairs generated via unsupervised "simulation-to-experiment" data translation. In sim...     »
Zeitschriftentitel:
Optica
Zeitschriftentitel:
Optica
Jahr:
2022
Band / Volume:
9
Heft / Issue:
1
Seitenangaben Beitrag:
32-41
Volltext / DOI:
doi:10.1364/OPTICA.438502
WWW:
https://opg.optica.org/optica/fulltext.cfm?uri=optica-9-1-32&id=466674
Print-ISSN:
2334-2536
TUM Einrichtung:
Lehrstuhl für Biologische Bildgebung - Zusammenarbeit mit dem Helmholtz-Zentrum München (Prof. Ntziachristos)
 BibTeX