Benutzer: Gast  Login
Titel:

Automatic Classification of Proximal Femur Fractures based on Attention Models

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Kazi, A.; Albarqouni, S.; Sanchez, A.; Kirchhoff, C.; Biberthaler, P.; Navab, N.; Mateus, D.
Abstract:
We target the automatic classication of fractures from clinical X-Ray images following the Arbeitsgemeinschaft Osteosynthese (AO) classication standard. We decompose the problem into the localisation of the region-of-interest (ROI) and the classication of the localized region. Our solution relies on current advances in multi-task end-to-end deep learning. More specially, we adapt an attention model known as Spatial Transformer to learn an image-dependent localization of the ROI trained only from...     »
Stichworte:
MICCAI,CAMP,MLMI,deeplearning
Kongress- / Buchtitel:
International Workshop on Machine Learning in Medical Imaging
Ausrichter der Konferenz:
Springer
Jahr:
2017
Seiten:
70--78
 BibTeX