The problem of scheduling with testing in the framework of explorable uncertainty models environments where some preliminary action can influence the duration of a task. In the model, each job has an unknown processing time that can be revealed by running a test. Alternatively, jobs may be run untested for the duration of a given upper limit. Recently, Dürr et al. have studied the setting where all testing times are of unit size and have given lower and upper bounds for the objectives of minimizing the sum of completion times and the makespan on a single machine. In this paper, we extend the problem to non-uniform testing times and present the first competitive algorithms. The general setting is motivated for example by online user surveys for market prediction or querying centralized databases in distributed computing. Introducing general testing times gives the problem a new flavor and requires updated methods with new techniques in the analysis. We present constant competitive ratios for the objective of minimizing the sum of completion times in the deterministic case, both in the non-preemptive and preemptive setting. For the preemptive setting, we additionally give a first lower bound. We also present a randomized algorithm with improved competitive ratio. Furthermore, we give tight competitive ratios for the objective of minimizing the makespan, both in the deterministic and the randomized setting.
«
The problem of scheduling with testing in the framework of explorable uncertainty models environments where some preliminary action can influence the duration of a task. In the model, each job has an unknown processing time that can be revealed by running a test. Alternatively, jobs may be run untested for the duration of a given upper limit. Recently, Dürr et al. have studied the setting where all testing times are of unit size and have given lower and upper bounds for the objectives of minimiz...
»