Benutzer: Gast  Login
Titel:

C.DOT Ground Truth Dataset

Dokumenttyp:
Forschungsdaten
Veröffentlichungsdatum:
28.06.2021
Verantwortlich:
Thiel, Kevin Kennard
Autorinnen / Autoren:
Thiel, Kevin Kennard
Institutionszugehörigkeit:
TUM
Herausgeber:
TUM
Identifikator:
doi:10.14459/2021mp1614575.001
Konzept-DOI:
doi:10.14459/2021mp1614575
Enddatum der Datenerzeugung:
04.12.2020
Fachgebiet:
DAT Datenverarbeitung, Informatik; VER Technik der Verkehrsmittel
zusätzliche Fachgebiete:
Object Tracking ; Industry 4.0 ; Ground Truth ; Augmented Reality, Computer Vision, Artificial Intelligence
Quellen der Daten:
Abbildungen von Objekten / image of objects; Statistik und Referenzdaten / statistics and reference data
Datentyp:
Bilder / images; mehrdimensionale Visualisierungen oder Modelle / models; Texte / texts; Datenbanken / data bases
Anderer Datentyp:
Camera Calibration File
Methode der Datenerhebung:
The data was created for research of object tracking for superimposed augmented reality in the context of automotive engineering. The images were taken using a calibrated webcam. The ground truth was captured using an accurate model-based tracker. The specific reason for capturing the data was to evaluate machine-learning based object trackers trained on synthetic data only. More information can be found in the provided readme.txt file.
Beschreibung:
A dataset for validation of 6-dof model trackers. It includes image sets, camera calibration data, ground truth data and projection data for each image. This data is provided for four different objects. For each object 3D model data is provided too. Two of those objects are taken from automotive engineering use cases of the Volkswagen Group. While the other two models are 3D printed versions of popular computer graphics models of the Stanford University Computer Graphics Laboratory. The data...     »
Links:

The corresponding journal article can be found under the following doi: 10.1109/TVCG.2021.3089096

https://www.in.tum.de/far/mitarbeiter/kevin-thiel/
http://graphics.stanford.edu/data/3Dscanrep/
https://www.volkswagen.de/

Schlagworte:
Image; Images; Image Sets; Camera Calibration; Ground Truth; Model; Models; Objects; Tracking; Object Tracking; Model-based Tracking; 6-dof Tracking; 6-dof, Six Degrees of Freedom; Automotive; Augmented Reality; Projection; Reference; Reference Points
Technische Hinweise:
View and download (1.41 GB, 2 files)
The data server also offers downloads with FTP
The data server also offers downloads with rsync (password m1614575):
rsync rsync://m1614575.001@dataserv.ub.tum.de/m1614575.001/
Sprache:
en
Rechte:
by, http://creativecommons.org/licenses/by/4.0
Andere Rechte:
Exception: For the reuse of the 3D printed versions of popular computer graphics models of the Stanford University Computer Graphics Laboratory, please consider the conditions of reuse of the repository (http://graphics.stanford.edu/data/3Dscanrep/). When using the data you agree to acknowledge the following related publication: “K. K. Thiel, F. Naumann, E. Jundt, S. Guennemann and G. J. Klinker, C.DOT - Convolutional Deep Object Tracker for Augmented Reality Based Purely on Synthetic Data, in I...     »
 BibTeX