Benutzer: Gast  Login
Titel:

Data Selection for Multi-Task Learning Under Dynamic Constraints

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
A. Capone; A. Lederer; J. Umlauft; S. Hirche
Abstract:
Learning-based techniques are increasingly effective at controlling complex systems. However, most work done so far has focused on learning control laws for individual tasks. Simultaneously learning multiple tasks on the same system is still a largely unaddressed research question. In particular, no efficient state space exploration schemes have been designed for multi-task control settings. Using this research gap as our main motivation, we present an algorithm that approximates the smallest da...     »
Stichworte:
data_driven_control; coman
Zeitschriftentitel:
IEEE Control Systems Letters
Jahr:
2020
Band / Volume:
5
Jahr / Monat:
2020-07
Heft / Issue:
3
Seitenangaben Beitrag:
959-964
Volltext / DOI:
doi:10.1109/lcsys.2020.3006279
Verlag / Institution:
Institute of Electrical and Electronics Engineers (IEEE)
E-ISSN:
2475-1456
Publikationsdatum:
01.07.2021
 BibTeX