Printed electronics become more and more relevant for applications in wearable electronics and sensors. Inkjet printing of silver nano-particles can be done at very low cost with a reasonably high precision and conductivity. In this paper, we investigate flexible patch antennas for wireless chip-to-chip communication scenarios, rapidly prototyped using an inkjet printing process. A patch antenna with a return loss of almost −20 dB at a resonance frequency of 2.09 GHz that agrees well with the conducted simulations is presented.
«
Printed electronics become more and more relevant for applications in wearable electronics and sensors. Inkjet printing of silver nano-particles can be done at very low cost with a reasonably high precision and conductivity. In this paper, we investigate flexible patch antennas for wireless chip-to-chip communication scenarios, rapidly prototyped using an inkjet printing process. A patch antenna with a return loss of almost −20 dB at a resonance frequency of 2.09 GHz that agrees well with the co...
»