Comparison of cardiac function index derived from femoral and jugular indicator injection for transpulmonary thermodilution with the PiCCO-device: A prospective observational study.
Dokumenttyp:
Article; Comparative Study; Journal Article; Observational Study
Autor(en):
Herner, Alexander; Heilmaier, Markus; Mayr, Ulrich; Schmid, Roland M; Huber, Wolfgang
Abstract:
INTRODUCTION: Cardiac function index (CFI) is a trans-pulmonary thermodilution (TPTD)-derived estimate of systolic function. CFI is defined as the ratio of cardiac output divided by global end-diastolic volume GEDV (CFI = CO/GEDV). Several studies demonstrated that the use of femoral venous access results in a marked overestimation of GEDV, while CFI is underestimated. One study suggested a correction formula for femoral venous access that markedly reduced the bias for GEDVI. Therefore, the last PiCCO-algorithm requires information about the CVC-position which suggests a correction of GEDV for femoral access. However, a recent study demonstrated inconsistencies of the last PiCCO algorithm using incorrected GEDV to calculate CFI despite obvious correction of GEDV. Nevertheless, this study was based on mathematical analyses of data displayed in a total of 15 patients equipped with only a femoral, but not with a jugular CVC. Therefore, this study compared CFI derived from the femoral indicator injection TPTD to data derived from jugular indicator injection in 28 patients with both a jugular and a femoral CVC.
METHODS: 28 ICU-patients with PiCCO-monitoring were included. Each dataset consisted of three triplicate TPTDs using the jugular venous gold standard access and the femoral access with and without information about the femoral indicator injection to evaluate, if correction for femoral GEDV also pertains to CFI. (CFI_jug: jugular indicator injection; CFI_fem: femoral indicator injection; CFI_fem_cor: femoral indicator injection with correct information about CVC-position; CFI_fem_uncor: femoral indicator injection with uncorrect information about CVC-position; CFI_fem_uncor_form = CFI_fem_uncor * (GEDVI_fem_uncor/GEDVI_fem_cor)).
RESULTS: CFI_fem_uncor was significantly lower than CFI_jug (4.28±1.70 vs. 5.21±1.91 min-1; p<0.001). Similarly, CFI_fem_cor was significantly lower than CFI_jug (4.24±1.62 vs. 5.21±1.91 min-1; p<0.001). This is explained by the finding that CFI_fem_uncor was not different to CFI_fem_cor (4.28±1.70 vs. 4.24±1.62 min-1; p = 0.611). This suggests that correction for femoral CVC does not pertain to CFI. Calculative correction of CFI_fem_uncor by multiplying CFI_fem_uncor by the ratio GEDVI_fem_uncor/GEDVI_jug resulted in CFI_fem_uncor_form which was slightly, but significantly different from the gold standard CFI_jug (5.51±2.00 vs. 5.21±1.91 min-1; p = 0.024). The agreement of measurements classified in the same category of CFI (decreased (<4.5), normal (4.5-6.5) and increased (>6.5 min-1)) was high for CFI_jug and CFI_fem_uncor_form (identical categories in 26 of 28 comparisons; p = 0.49). By contrast, the agreement with CFI_jug was significantly lower for CFI_fem_cor (14 out of 28; p<0.001) and CFI_fem_uncor (15 out of 28; p<0.001).
CONCLUSIONS: While the last PiCCO algorithm obviously corrects GEDVI for femoral indicator injection, this correction is not applied to CFI. Therefore, femoral TPTD indicator injection results in substantially lower values for CFI compared to TPTD using a jugular CVC. Necessarily, uncorrected CFI-values derived from femoral TPTD are misleading and have to be corrected.