Test tables are a widely used and generally accepted means to intuitively specify test cases for automation software. However, each table only specifies a single software trace, whereas the actual software behavior may cover multiple similar traces not covered by the table. Within this work, we present a generalization concept for test tables allowing for bounded and unbounded repetition of steps, \grqqdon't-care” values, as well as calculations with earlier observed values. We provide a verification mechanism for checking conformance of an IEC 61131-3 PLC software with a generalized test table, making use of a state-of-the-art model checker. Our notation is inspired by widely-used paradigms found in spreadsheet applications. By an empirical study with mechanical engineering students, we show that the notation matches user expectations. A real-world example extracted from an industrial automation plant illustrates our approach.
«
Test tables are a widely used and generally accepted means to intuitively specify test cases for automation software. However, each table only specifies a single software trace, whereas the actual software behavior may cover multiple similar traces not covered by the table. Within this work, we present a generalization concept for test tables allowing for bounded and unbounded repetition of steps, \grqqdon't-care” values, as well as calculations with earlier observed values. We provide a verific...
»