User: Guest  Login
Title:

Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas

Document type:
Zeitungsartikel
Author(s):
Nagler, T. and Czado, C.
Abstract:
Practical applications of nonparametric density estimators in more than three dimensions suffer a great deal from the well-known curse of dimensionality: convergence slows down as dimension increases. We show that one can evade the curse of dimensionality by assuming a simplified vine copula model for the dependence between variables. We formulate a general nonparametric estimator for such a model and show under high-level assumptions that the speed of convergence is independent of dimension. We...     »
Keywords:
Asymptotic; Classification; Copula; Dependence; Kernel density; Vine
Dewey Decimal Classification:
510 Mathematik
Journal title:
Journal of Multivariate Analysis
Year:
2016
Journal volume:
151
Year / month:
2016-10
Quarter:
4. Quartal
Month:
Oct
Journal issue:
C
Pages contribution:
69-89
Reviewed:
ja
Language:
en
Fulltext / DOI:
doi:10.1016/j.jmva.2016.07.003
WWW:
Journal of Multivariate Analysis
Publisher:
Academic Press, Inc.
Publisher address:
Orlando, FL, USA
Status:
Verlagsversion / published
TUM Institution:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX
versions