Benutzer: Gast  Login
Titel:

Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas

Dokumenttyp:
Zeitungsartikel
Autor(en):
Nagler, T. and Czado, C.
Abstract:
Practical applications of nonparametric density estimators in more than three dimensions suffer a great deal from the well-known curse of dimensionality: convergence slows down as dimension increases. We show that one can evade the curse of dimensionality by assuming a simplified vine copula model for the dependence between variables. We formulate a general nonparametric estimator for such a model and show under high-level assumptions that the speed of convergence is independent of dimension. We...     »
Stichworte:
Asymptotic; Classification; Copula; Dependence; Kernel density; Vine
Dewey Dezimalklassifikation:
510 Mathematik
Zeitschriftentitel:
Journal of Multivariate Analysis
Jahr:
2016
Band / Volume:
151
Jahr / Monat:
2016-10
Quartal:
4. Quartal
Monat:
Oct
Heft / Issue:
C
Seitenangaben Beitrag:
69-89
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.1016/j.jmva.2016.07.003
WWW:
Journal of Multivariate Analysis
Verlag / Institution:
Academic Press, Inc.
Verlagsort:
Orlando, FL, USA
Status:
Verlagsversion / published
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX
Versionen