The active pixel concept is a promising architecture for imaging systems. We report on the electrooptical characterization of a hybrid organic active pixel sensor (APS) where an organic photodiode is integrated on top of an amorphous silicon thin-film transistor circuitry, which drives the image sensor and performs the signal processing. The active pixel approach provides an on-pixel amplification of the signal with a charge gain of up to 10. A fill factor that is close to 100% is obtained by embedding all transistors underneath the organic photodetector. We show that, as compared with organic passive pixels, the organic APS shows a higher sensitivity, making the detection of smaller signals possible.
«
The active pixel concept is a promising architecture for imaging systems. We report on the electrooptical characterization of a hybrid organic active pixel sensor (APS) where an organic photodiode is integrated on top of an amorphous silicon thin-film transistor circuitry, which drives the image sensor and performs the signal processing. The active pixel approach provides an on-pixel amplification of the signal with a charge gain of up to 10. A fill factor that is close to 100% is obtained by em...
»