With respect to monitoring of high intensity focused ultrasound (HIFU), synonym focused ultrasound (FUS) treatment, magnetic resonance imaging (MRI) is characterized by several advantageous properties: the precise definition and morphological characterization of the target area (before and after the intervention), the real-time visualization of the treatment effect by thermal imaging (during the intervention) and in the sense of a stereotactic system, the 3-dimensional localization of the target lesion, planning of the target volume and assessment of the achieved ablation volume (before and during the intervention). Non-enhanced T2-weighted multislice MR images are acquired for planning of the intervention. For temperature monitoring (comprising thermometry and thermodosimetry), the temperature-dependent shift of proton resonance frequency (PRFS) is most frequently employed. This method is independent of the treated tissue type or thermally induced tissue changes and facilitates a relative measurement of thetemperature change based on a reference value. Future MRI applications include diffusion-weighted MRI (DWI-MRI; for the intrainterventional estimation of treatment efficacy), dynamic contrast-enhanced MRI (DCE-MRI, for the prediction of the potential and assessment of the treatment effect achieved) and motion-corrected temperature monitoring (referenceless and multibaseline thermometry).
«
With respect to monitoring of high intensity focused ultrasound (HIFU), synonym focused ultrasound (FUS) treatment, magnetic resonance imaging (MRI) is characterized by several advantageous properties: the precise definition and morphological characterization of the target area (before and after the intervention), the real-time visualization of the treatment effect by thermal imaging (during the intervention) and in the sense of a stereotactic system, the 3-dimensional localization of the target...
»