Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Ioannis Konstantinos Seisopoulos
Titel:
Utilising neural networks for estimating two and three dimensional vine copulas allowing for changing dependence
Abstract:
Neural networks are powerful tools for approximating complex functions. In contrast to traditional multivariate distributions, vine copulas provide flexible methods for quantifying the dependence between variables. This thesis investigates the use of feed-forward networks to estimate copula families and their parameters in a time-series context, allowing the dependence to change over time. We assess this approach through extensive simulations and propose a mixture of copulas with a neural gating...     »
Fachgebiet:
MAT Mathematik
DDC:
510 Mathematik
Betreuer:
Claudia Czado, Ferdinand Buchner
Jahr:
2026
Quartal:
1. Quartal
Jahr / Monat:
2026-01
Monat:
Jan
Seiten/Umfang:
162
Sprache:
en
Hochschule / Universität:
Technische Universität München
Fakultät:
TUM School of Computation, Information and Technology
TUM Einrichtung:
Angewandte Mathematische Statistik
Format:
Text
Annahmedatum:
09.01.2026
 BibTeX