Benutzer: Gast  Login
Titel:

Nonlinear Causal Discovery for Grouped Data

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Göbler, Konstantin; Windisch, Tobias; Drton, Mathias
Seitenangaben Beitrag:
1453-1475
Abstract:
Inferring cause-effect relationships from observational data has gained significant attention in recent years, but most methods are limited to scalar random variables. In many important domains, including neuroscience, psychology, social science, and industrial manufacturing, the causal units of interest are groups of variables rather than individual scalar measurements. Motivated by these applications, we extend nonlinear additive noise models to handle random vectors, establishing a two-step a...     »
Dewey-Dezimalklassifikation:
510 Mathematik
Herausgeber:
MLResearchPress
Kongress- / Buchtitel:
Proceedings of Machine Learning Research
Kongress / Zusatzinformationen:
The 41st Conference on Uncertainty in Artificial Intelligence
Band / Teilband / Volume:
286
Datum der Konferenz:
21 - 25 July 2025
Publikationsdatum:
11.07.2025
Jahr:
2025
Quartal:
3. Quartal
Jahr / Monat:
2025-07
Monat:
Jul
Seiten:
1453-1475
E-ISBN:
2640-3498
Sprache:
en
Erscheinungsform:
WWW
WWW:
Proceedings of Machine Learning Research
Semester:
SS 25
TUM Einrichtung:
Forschungsgruppe Mathematische Statistik
Format:
Text
 BibTeX