Benutzer: Gast  Login
Titel:

Prediction of aerodynamic coefficients for multi-swept delta wings via a hybrid neural network

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Zieher, Moritz; Breitsamter, Christian
Abstract:
This study investigates the prediction capabilities of a hybrid neural network model for the aerodynamic coefficients of multiple swept delta wings, focusing on rapidly estimating coefficient slopes and aerodynamic characteristics. By leveraging a machine learning approach combining image classification and conventional feed-forward neural networks, the study aims to provide an efficient alternative to resource-intensive computational fluid dynamics simulations or wind tunnel experiments during...     »
Stichworte:
Hybrid neural network Aerodynamic coefficients Multiple swept delta wings Machine learning
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
Aerospace Science and Technology
Jahr:
2025
Band / Volume:
156
Seitenangaben Beitrag:
109762
Nachgewiesen in:
Scopus
Sprache:
en
Volltext / DOI:
doi:10.1016/j.ast.2024.109762
WWW:
https://www.sciencedirect.com/science/article/pii/S1270963824008915
Verlag / Institution:
Elsevier BV
E-ISSN:
1270-9638
Hinweise:
Acknowledgements The funding of the presented work within the Luftfahrtforschungsprogramm VI-1 (LUFO VI-1) project DIGIfly (FKZ: 20X19091) by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) is gratefully acknowledged.
Eingereicht (bei Zeitschrift):
30.07.2024
Angenommen (von Zeitschrift):
19.11.2024
Publikationsdatum:
01.01.2025
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX