Benutzer: Gast  Login
Titel:

Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.

Dokumenttyp:
Article; Multicenter Study; Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Autor(en):
Wagner, Sophia J; Reisenbüchler, Daniel; West, Nicholas P; Niehues, Jan Moritz; Zhu, Jiefu; Foersch, Sebastian; Veldhuizen, Gregory Patrick; Quirke, Philip; Grabsch, Heike I; van den Brandt, Piet A; Hutchins, Gordon G A; Richman, Susan D; Yuan, Tanwei; Langer, Rupert; Jenniskens, Josien C A; Offermans, Kelly; Mueller, Wolfram; Gray, Richard; Gruber, Stephen B; Greenson, Joel K; Rennert, Gad; Bonner, Joseph D; Schmolze, Daniel; Jonnagaddala, Jitendra; Hawkins, Nicholas J; Ward, Robyn L; Morton, D...     »
Abstract:
Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach su...     »
Zeitschriftentitel:
Cancer Cell
Jahr:
2023
Band / Volume:
41
Heft / Issue:
9
Seitenangaben Beitrag:
1650-1661.e4
Volltext / DOI:
doi:10.1016/j.ccell.2023.08.002
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/37652006
Print-ISSN:
1535-6108
TUM Einrichtung:
Institut für Allgemeine Pathologie und Pathologische Anatomie (Dr. Mogler komm.)
 BibTeX