Human hand and finger tracking is an important input modality for both virtual and augmented reality. We present a novel device that overcomes the disadvantages of current glove-based or vision- based solutions by using inverse-kinematic models of the human hand. The fingertips are tracked by an optical infrared tracking system and the pose of the phalanxes is calculated from the known anatomy of the hand. The new device is lightweight and accurate and allows almost arbitrary hand movement. Exami- nations of the flexibility of the hand have shown that this new approach is practical because ambi- guities in the relationship between finger tip posi- tions and joint positions, which are theoretically possible, occur only scarcely in practical use.
«