Augmented Reality (AR) provides a natural interface to the ``calm'' pervasive technology anticipated in large-scale Ubiquitous Computing environments. However, the range of classic AR applications has been limited by the scope, range and cost of sensors used for tracking. Hybrid tracking approaches can go some way to extending this range. We propose an approach, called Ubiquitous Tracking, in which data from widespread and diverse heterogeneous tracking sensors is automatically and dynamically fused, and then transparently provided to applications. A formal model represents spatial relationships between objects as a graph attributed with quality-of-service parameters. This paper presents a software implementation, in which a dynamic data flow network of distributed software components is thereby constructed in response to queries and optimisation criteria specified by applications. This implementation is demonstrated using a small laboratory example, and larger setups modelled in a simulation environment.
«
Augmented Reality (AR) provides a natural interface to the ``calm'' pervasive technology anticipated in large-scale Ubiquitous Computing environments. However, the range of classic AR applications has been limited by the scope, range and cost of sensors used for tracking. Hybrid tracking approaches can go some way to extending this range. We propose an approach, called Ubiquitous Tracking, in which data from widespread and diverse heterogeneous tracking sensors is automatically and dynami...
»