We present an intensity based deformable registration algorithm for 3D ultrasound data. The proposed method uses a variational approach and combines the characteristics of a multilevel algorithm and the properties of ultrasound data in order to provide a fast and accurate deformable registration method. In contrast to previously proposed approaches, we use no feature points and no interpolation technique, but compute a dense displacement field directly. We demonstrate that this approach, although it includes solving large PDE systems, reduces the computation time by an order of magnitude compared to the last reported results, if implemented using efficient numerical techniques. The performance of the algorithm is tested on multiple 3D US images of the liver. Validation is performed by simulations, similarity comparisons between original and deformed images, visual inspection of the displacement fields and visual assessment of the deformed images by physicians.
«
We present an intensity based deformable registration algorithm for 3D ultrasound data. The proposed method uses a variational approach and combines the characteristics of a multilevel algorithm and the properties of ultrasound data in order to provide a fast and accurate deformable registration method. In contrast to previously proposed approaches, we use no feature points and no interpolation technique, but compute a dense displacement field directly. We demonstrate that this approach, altho...
»