Benutzer: Gast  Login
Titel:

PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Deng, H.; Birdal, T.; Ilic, S.
Abstract:
We present PPF-FoldNet for unsupervised learning of 3D local descriptors on pure point cloud geometry. Based on the folding-based auto-encoding of well known point pair features, PPF-FoldNet offers many desirable properties: it necessitates neither supervision, nor a sensitive local reference frame, benefits from point-set sparsity, is end-to-end, fast, and can extract powerful rotation invariant descriptors. Thanks to a novel feature visualization, its evolution can be monitored to provide inte...     »
Stichworte:
CAMP,CAMPComputerVision,ComputerVision,Rigid3DObjectDetection,ProjectPointClouds,ECCV,ECCV2018,Reconstruction,3DReconstruction
Kongress- / Buchtitel:
European Conference on Computer Vision (ECCV)
Ausrichter der Konferenz:
Springer
Jahr:
2018
 BibTeX