Benutzer: Gast  Login
Titel:

q-Space Deep Learning for Twelve-Fold Shorter and Model-Free Diffusion MRI Scans

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Golkov, V.; Dosovitskiy, A.; Saemann, P.; Sperl, JI.; Sprenger, T.; Czisch, M.; Menzel, MI.; Gómez, PA.; Haase, A.; Brox, T.; Cremers, D.
Abstract:
Diffusion MRI uses a multi-step data processing pipeline. With certain steps being prone to instabilities, the pipeline relies on considerable amounts of partly redundant input data, which requires long acquisition time. This leads to high scan costs and makes advanced diffusion models such as diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) inapplicable for children and adults who are uncooperative, uncomfortable or unwell. We demonstrate how deep...     »
Stichworte:
MedicalImaging,IBBM,MICCAI
Zeitschriftentitel:
MICCAI: International Conference on Medical Image Computing and Computer-Assisted Intervention
Jahr:
2015
 BibTeX