Benutzer: Gast  Login
Titel:

Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Baur, C.; Wiestler, B.; Albarqouni, S.; Navab, N.
Abstract:
Reliably modeling normality and differentiating abnormal appearances from normal cases is a very appealing approach for detecting pathologies in medical images. A plethora of such unsupervised anomaly detection approaches has been made in the medical domain, based on statistical methods, content-based retrieval, clustering and recently also deep learning. Previous approaches towards deep unsupervised anomaly detection model local patches of normal anatomy with variants of Autoencoders or GANs, a...     »
Stichworte:
miccai,Brainles,Brain lesion workshop,autoencoder,VAEGAN,VAE-GAN,GAN,VAE,brain,MRI,MSLesion,segmentation,unsupervised,deeplearning
Kongress- / Buchtitel:
International MICCAI Brainlesion Workshop
Ausrichter der Konferenz:
Springer
Jahr:
2018
 BibTeX