User: Guest  Login
Document type:
Konferenzbeitrag
Contribution type:
Textbeitrag / Aufsatz
Author(s):
Rinderle, M.; Gagliardi, A.
Title:
Machine Learning & multiscale simulations: toward fast screening of organic semiconductor materials
Abstract:
Organic semiconductor devices promise cost-efficient processability at low temperatures, but the usually amorphous materials suffer from low charge carrier mobility. The search for high mobility organic semiconductor materials has thrived data science and Machine Learning approaches to screen the vast amount of possible organic materials. We present a multiscale simulation model based on machine learned transfer integrals to compute the charge carrier mobility in organic thin films.
Book / Congress title:
International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)
Congress (additional information):
Torino, Italy 13-17 Sep 2021-09
Publisher:
IEEE Explore Library
Year:
2021
Quarter:
3. Quartal
Year / month:
2021-09
Month:
Sep
Print-ISBN:
2158-3234
E-ISBN:
978-1-6654-1276-6
Bookseries ISSN:
2158-3242, 2158-3234
Language:
en
Fulltext / DOI:
doi:10.1109/NUSOD52207.2021.9541414
WWW:
https://ieeexplore.ieee.org/abstract/document/9541414
 BibTeX