The advancement of electric mobility as a measure to comply with international climate targets and sustain renewable resources in the future has led to an electrification of the mobility sector in recent years. This trend has not been spared in the logistics and commercial vehicle sector. Emerging electric powertrain concepts for long-haul vehicles have since been developed and adapted to different use cases and axle concepts. In this paper, the authors show the influence of the powertrain topology and the associated design of the electric machine on the efficiency and energy consumption of commercial vehicles. For this, existing series or prototype long-haul axle topologies are analyzed regarding their efficiency and operating points within four driving cycles. Additionally, a sensitivity analysis on the influence of the total gearbox ratio tests the assumed designs. We find that single-machine topologies offer efficiency advantages over multiple-machine topologies. However, this study highlights a joint consideration of application-specific machine design and topology to realize the full technological potential.
«
The advancement of electric mobility as a measure to comply with international climate targets and sustain renewable resources in the future has led to an electrification of the mobility sector in recent years. This trend has not been spared in the logistics and commercial vehicle sector. Emerging electric powertrain concepts for long-haul vehicles have since been developed and adapted to different use cases and axle concepts. In this paper, the authors show the influence of the powertrain topol...
»