Benutzer: Gast  Login
Titel:

Adversarial Vision Challenge

Dokumenttyp:
Buchbeitrag
Autor(en):
Brendel, Wieland; Rauber, Jonas; Kurakin, Alexey; Papernot, Nicolas; Veliqi, Behar; Mohanty, Sharada P.; Laurent, Florian; Salathé, Marcel; Bethge, Matthias; Yu, Yaodong; Zhang, Hongyang; Xu, Susu; Zhang, Hongbao; Xie, Pengtao; Xing, Eric P.; Brunner, Thomas; Diehl, Frederik; Rony, Jérôme; Hafemann, Luiz Gustavo; Cheng, Shuyu; Dong, Yinpeng; Ning, Xuefei; Li, Wenshuo; Wang, Yu
Abstract:
This competition was meant to facilitate measurable progress towards robust machine vision models and more generally applicable adversarial attacks. It encouraged researchers to develop query-efficient adversarial attacks that can successfully operate against a wide range of defenses while just observing the final model decision to generate adversarial examples. Conversely, the competition encouraged the development of new defenses that can resist a wide range of strong decision-based attacks. I...     »
Seitenangaben Beitrag:
129-153
Herausgeber:
Escalera, Sergio; Herbrich, Ralf
Buchtitel:
The NeurIPS '18 Competition
Verlag / Institution:
Springer International Publishing
Verlagsort:
Cham
Jahr:
2020
Print-ISBN:
978-3-030-29135-8
Serientitel:
The Springer Series on Challenges in Machine Learning
DOI:
doi:10.1007/978-3-030-29135-8_5
 BibTeX