Manufacturing systems exist in many different variants and evolve over time in order to meet changing requirements or environment contexts. This leads to an increased design complexity as well as to increased maintenance effort. In order to appropriately handle this inherent complexity, we propose a multi-perspective modeling approach combining UML activity, component-based and state chart diagrams to separately represent different system aspects. We combine the multi-perspective modeling approach with delta modeling to capture the variability and evolution of these manufacturing systems. Delta modeling allows a flexible, yet concise and understandable representation of variability in a modular manner. We examine our approach by applying it to a manufacturing lab demonstrator system with automated code generation from models obtained by delta application.
«
Manufacturing systems exist in many different variants and evolve over time in order to meet changing requirements or environment contexts. This leads to an increased design complexity as well as to increased maintenance effort. In order to appropriately handle this inherent complexity, we propose a multi-perspective modeling approach combining UML activity, component-based and state chart diagrams to separately represent different system aspects. We combine the multi-perspective modeling approa...
»