User: Guest  Login
Title:

Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.

Document type:
Article; Multicenter Study; Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Author(s):
Wagner, Sophia J; Reisenbüchler, Daniel; West, Nicholas P; Niehues, Jan Moritz; Zhu, Jiefu; Foersch, Sebastian; Veldhuizen, Gregory Patrick; Quirke, Philip; Grabsch, Heike I; van den Brandt, Piet A; Hutchins, Gordon G A; Richman, Susan D; Yuan, Tanwei; Langer, Rupert; Jenniskens, Josien C A; Offermans, Kelly; Mueller, Wolfram; Gray, Richard; Gruber, Stephen B; Greenson, Joel K; Rennert, Gad; Bonner, Joseph D; Schmolze, Daniel; Jonnagaddala, Jitendra; Hawkins, Nicholas J; Ward, Robyn L; Morton, D...     »
Abstract:
Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach su...     »
Journal title abbreviation:
Cancer Cell
Year:
2023
Journal volume:
41
Journal issue:
9
Pages contribution:
1650-1661.e4
Fulltext / DOI:
doi:10.1016/j.ccell.2023.08.002
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/37652006
Print-ISSN:
1535-6108
TUM Institution:
Institut für Allgemeine Pathologie und Pathologische Anatomie (Dr. Mogler komm.)
 BibTeX