User: Guest  Login
Title:

Imaging meningioma biology: Machine learning predicts integrated risk score in WHO grade 2/3 meningioma.

Document type:
Journal Article
Author(s):
Kertels, Olivia; Delbridge, Claire; Sahm, Felix; Ehret, Felix; Acker, Güliz; Capper, David; Peeken, Jan C; Diehl, Christian; Griessmair, Michael; Metz, Marie-Christin; Negwer, Chiara; Krieg, Sandro M; Onken, Julia; Yakushev, Igor; Vajkoczy, Peter; Meyer, Bernhard; Zips, Daniel; Combs, Stephanie E; Zimmer, Claus; Kaul, David; Bernhardt, Denise; Wiestler, Benedikt
Abstract:
BACKGROUND: Meningiomas are the most common primary brain tumors. While most are benign (WHO grade 1) and have a favorable prognosis, up to one-fourth are classified as higher-grade, falling into WHO grade 2 or 3 categories. Recently, an integrated risk score (IRS) pertaining to tumor biology was developed and its prognostic relevance was validated in a large, multicenter study. We hypothesized imaging data to be reflective of the IRS. Thus, we assessed the potential of a machine learning classi...     »
Journal title abbreviation:
Neurooncol Adv
Year:
2024
Journal volume:
6
Journal issue:
1
Fulltext / DOI:
doi:10.1093/noajnl/vdae080
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/38957161
TUM Institution:
Institut für Allgemeine Pathologie und Pathologische Anatomie (Dr. Mogler komm.); Klinik und Poliklinik für Neurochirurgie (Prof. Meyer); Klinik und Poliklinik für RadioOnkologie und Strahlentherapie (Prof. Combs); Professur für AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler); Professur für Neuroradiologie (Prof. Zimmer)
 BibTeX