User: Guest  Login
Title:

Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data

Document type:
Zeitschriftenaufsatz
Author(s):
Li, Jiao; Wang, Cong; Chen, Tingting; Lu, Tong; Li, Shuai; Sun, Biao; Gao, Feng; Ntziachristos, Vasilis
Abstract:
Deep learning (DL) shows promise for quantitating anatomical features and functional parameters of tissues in quantitative optoacoustic tomography (QOAT), but its application to deep tissue is hindered by a lack of ground truth data. We propose DL-based "QOAT-Net," which functions without labeled experimental data: a dual-path convolutional network estimates absorption coefficients after training with data-label pairs generated via unsupervised "simulation-to-experiment" data translation. In sim...     »
Journal title:
Optica
Journal title abbreviation:
Optica
Year:
2022
Journal volume:
9
Journal issue:
1
Pages contribution:
32-41
Fulltext / DOI:
doi:10.1364/OPTICA.438502
WWW:
https://opg.optica.org/optica/fulltext.cfm?uri=optica-9-1-32&id=466674
Print-ISSN:
2334-2536
TUM Institution:
Lehrstuhl für Biologische Bildgebung - Zusammenarbeit mit dem Helmholtz-Zentrum München (Prof. Ntziachristos)
 BibTeX