User: Guest  Login
Title:

BOP: Benchmark for 6D Object Pose Estimation

Document type:
Konferenzbeitrag
Author(s):
Hodan, T.; Michel, F.; Brachmann, E.; Kehl, W.; Buch, A.; Kraft, D.; Drost, B.; Vidal, J.; Ihrke, S.; Zabulis, X.; Sahin, C.; Manhardt, F.; Tombari, F.; Kim, T.K.; Matas, J.; Rother, C.
Abstract:
We propose a benchmark for 6D pose estimation of a rigid object from a single RGB-D input image. The training data consists of a texture-mapped 3D object model or images of the object in known 6D poses. The benchmark comprises of: i) eight datasets in a unified format that cover different practical scenarios, including two new datasets focusing on varying lighting conditions, ii) an evaluation methodology with a pose-error function that deals with pose ambiguities, iii) a comprehensive evaluatio...     »
Keywords:
CAMP,CAMPComputerVision,ComputerVision,ECCV,CNN,Rigid3DObjectDetection,Deep Learning,deeplearning
Book / Congress title:
European Conference on Computer Vision (ECCV)
Year:
2018
 BibTeX