Innovation processes are highly susceptible to cyclic influences, such as evolving knowledge due to new technologies. In order to cope with these challenge, computational support is required. Paper-based design methods have vast amounts of knowledge at their disposal in the form of design catalogues. However, lacking a computational implementation, these knowledge sources provide no support for considering dynamic influences in the innovation process. The presented method is targeted at making the physical effects contained in design catalogues available for computational design synthesis approaches. For this purpose, this paper introduces the notion of abstraction ports that is used to represent the valid mapping between functional operators and physical effects. For the automated assignment of abstraction ports, a method has been developed that analyzes the equation structure of physical effects. This approach is derived from the modeling technique of bond graphs and is independent of any selection process proposed by design catalogues. Moreover, it allows for the formalization of evolving knowledge in new physical effects that are not yet contained in design catalogues. The assignment of abstraction ports has been successfully validated through the formalization of the physical effects of two design catalogues. Future work comprises the integration of quantitative characteristics of physical effects and the realization within the object-oriented graph grammar system booggi.
«
Innovation processes are highly susceptible to cyclic influences, such as evolving knowledge due to new technologies. In order to cope with these challenge, computational support is required. Paper-based design methods have vast amounts of knowledge at their disposal in the form of design catalogues. However, lacking a computational implementation, these knowledge sources provide no support for considering dynamic influences in the innovation process. The presented method is targeted at making the...
»