Benutzer: Gast  Login
Titel:

CPS++: Improving Class-level 6D Pose and Shape Estimation From Monocular Images With Self-Supervised Learning

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Manhardt, F.; Wang, G.; Busam, B.; Nickel, M.; Meier, S.; Minciullo, L.; Ji, X.; Navab, N.
Abstract:
Contemporary monocular 6D pose estimation methods can only cope with a handful of object instances. This naturally hampers possible applications as, for instance, robots seamlessly integrated in everyday processes necessarily require the ability to work with hundreds of different objects. To tackle this problem of immanent practical relevance, we propose a novel method for class-level monocular 6D pose estimation, coupled with metric shape retrieval. Unfortunately, acquiring adequate annotations...     »
Stichworte:
CAMP,CAMPComputerVision,ComputerVision,Rigid3DObjectDetection
Zeitschriftentitel:
arXiv preprint arXiv:2003.05848v3
Jahr:
2020
Hinweise:
Open attachment browser
 BibTeX