Benutzer: Gast  Login
Titel:

Deep Model-Based 6D Pose Refinement in RGB

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Manhardt, F.; Kehl, W.; Navab, N.; Tombari, F.
Abstract:
We present a novel approach for model-based 6D pose refinement in color data. Building on the established idea of contour-based pose tracking, we teach a deep neural network to predict a translational and rotational update. At the core, we propose a new visual loss that drives the pose update by aligning object contours, thus avoiding the definition of any explicit appearance model. In contrast to previous work our method is correspondence-free, segmentation-free, can handle occlusion and is agn...     »
Stichworte:
CAMP,CAMPComputerVision,ComputerVision,ECCV,CNN,Rigid3DObjectDetection,Deep Learning,deeplearning
Kongress- / Buchtitel:
The European Conference on Computer Vision (ECCV)
Jahr:
2018
Hinweise:
Open attachment browser
 BibTeX