Benutzer: Gast  Login
Titel:

Deeper Depth Prediction with Fully Convolutional Residual Networks

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Laina, I.; Rupprecht, C.; Belagiannis, V.; Tombari, F.; Navab, N.
Abstract:
This paper addresses the problem of estimating the depth map of a scene given a single RGB image. We propose a fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps. In order to improve the output resolution, we present a novel way to efficiently learn feature map up-sampling within the network. For optimization, we introduce the reverse Huber loss that is particularly suited for the task at hand and driven by the...     »
Stichworte:
ComputerVision,CAMP,3DV,deeplearning
Kongress- / Buchtitel:
3D Vision (3DV), 2016 Fourth International Conference on
Ausrichter der Konferenz:
Ieee
Jahr:
2016
Seiten:
239--248
 BibTeX