Navigated bronchoscopy has been developed by various groups within the last decades. Systems based on CT data and electromagnetic tracking enable the visualization of the position and orientation of the bronchoscope, forceps, and biopsy tools within CT data. Therefore registration between the tracking space and the CT volume is required. Standard procedures are based on point-based registration methods that require selecting corresponding natural landmarks in both coordinate systems by the examiner. We developed a novel algorithm for a fully automatic registration procedure in navigated bronchoscopy based on the trajectory recorded during routine examination of the airways at the beginning of an intervention. The proposed system provides advantages in terms of an unchanged medical workflow and high accuracy. We compared the novel method with point-based and ICP-based registration. Experiments demonstrate that the novel method transforms up to 97% of tracking points inside the segmented airways, which was the best performance compared to the other methods.
«
Navigated bronchoscopy has been developed by various groups within the last decades. Systems based on CT data and electromagnetic tracking enable the visualization of the position and orientation of the bronchoscope, forceps, and biopsy tools within CT data. Therefore registration between the tracking space and the CT volume is required. Standard procedures are based on point-based registration methods that require selecting corresponding natural landmarks in both coordinate systems by the exami...
»