Benutzer: Gast  Login
Titel:

BOP: Benchmark for 6D Object Pose Estimation

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Hodan, T.; Michel, F.; Brachmann, E.; Kehl, W.; Buch, A.; Kraft, D.; Drost, B.; Vidal, J.; Ihrke, S.; Zabulis, X.; Sahin, C.; Manhardt, F.; Tombari, F.; Kim, T.K.; Matas, J.; Rother, C.
Abstract:
We propose a benchmark for 6D pose estimation of a rigid object from a single RGB-D input image. The training data consists of a texture-mapped 3D object model or images of the object in known 6D poses. The benchmark comprises of: i) eight datasets in a unified format that cover different practical scenarios, including two new datasets focusing on varying lighting conditions, ii) an evaluation methodology with a pose-error function that deals with pose ambiguities, iii) a comprehensive evaluatio...     »
Stichworte:
CAMP,CAMPComputerVision,ComputerVision,ECCV,CNN,Rigid3DObjectDetection,Deep Learning,deeplearning
Kongress- / Buchtitel:
European Conference on Computer Vision (ECCV)
Jahr:
2018
 BibTeX