Benutzer: Gast  Login
Titel:

Error Corrective Boosting for Learning Fully Convolutional Networks with Limited Data

Dokumenttyp:
Buchbeitrag
Autor(en):
Roy, A. Guha; Conjeti, S.; Sheet, D.; Katouzian, A.; Navab, N.; Wachinger, C.
Abstract:
Training deep fully convolutional neural networks (F-CNNs) for semantic image segmentation requires access to abundant labeled data. While large datasets of unlabeled image data are available in medical applications, access to manually labeled data is very limited. We propose to automatically create auxiliary labels on initially unlabeled data with existing tools and to use them for pre-training. For the subsequent fine-tuning of the network with manually labeled data, we introduce error correct...     »
Seitenangaben Beitrag:
231--239
Stichworte:
MICCAI,Deep Learning,Boosting,Brain,Segmentation
Herausgeber:
Descoteaux, Maxime; Maier-Hein, Lena; Franz, Alfred; Jannin, Pierre; Collins, D. Louis; Duchesne, Simon
Buchtitel:
Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III
Verlag / Institution:
Springer International Publishing
Verlagsort:
Cham
Jahr:
2017
Print-ISBN:
978-3319661797
 BibTeX