Benutzer: Gast  Login
Titel:

Identification of Challenging Highway-Scenarios for the Safety Validation of Automated Vehicles Based on Real Driving Data

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Ponn, Thomas; Breitfus, Matthias; Yu, Xiao; Diermeyer, Frank
Abstract:
For a successful market launch of automated vehicles (AVs), proof of their safety is essential. Due to the open parameter space, an infinite number of traffic situations can occur, which makes the proof of safety an unsolved problem. With the so-called scenario-based approach, all relevant test scenarios must be identified. This paper introduces an approach that finds particularly challenging scenarios from real driving data (RDD) and assesses their difficulty using a novel metric. Starting from...     »
Stichworte:
FTM Fahrerassistenz und Sicherheit; FTM Automatisiertes Fahren
Kongress- / Buchtitel:
2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)
Verlag / Institution:
IEEE
Publikationsdatum:
10.09.2020
Jahr:
2020
Nachgewiesen in:
Scopus
Print-ISBN:
9781728156415
Sprache:
en
Volltext / DOI:
doi:10.1109/ever48776.2020.9242539
TUM Einrichtung:
Lehrstuhl für Fahrzeugtechnik
 BibTeX