Benutzer: Gast  Login
Weniger Felder
Einfache Suche
Titel:

Heavy tailed spatial autocorrelation models

Dokumenttyp:
Zeitungsartikel
Autor(en):
Kreuzer, A., Erhardt, T., Nagler, T., and Czado, C.
Abstract:
Appropriate models for spatially autocorrelated data account for the fact that observations are not independent. A popular model in this context is the simultaneous autoregressive (SAR) model that allows to model the spatial dependency structure of a response variable and the influence of covariates on this variable. This spatial regression model assumes that the error follows a normal distribution. Since this assumption cannot always be met, it is necessary to extend this model to other error d...     »
Stichworte:
Simultaneous autoregressive model, spatial dependence, fire danger, heavy tails
Zeitschriftentitel:
Preprint
Jahr:
2017
Eingereicht (bei Zeitschrift):
28.08.2017
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX